Gruber-Stadler Margret, Mühlhäuser Max, Sellevåg Stig R, Nielsen Claus J
Studiengang Umwelt-, Verfahrens- und Biotechnik, Management Center Innsbruck Internationale Fachhochschulgesellschaft mbH, Egger-Lienz-Strasse 120, A-6020 Innsbruck, Austria.
J Phys Chem A. 2008 Jan 10;112(1):9-22. doi: 10.1021/jp0753833. Epub 2007 Dec 11.
The elementary vapor-phase reaction between Cl atoms and HCHO has been studied by ab initio methods. Calculations at the MP2, MP3, MP4(SDTQ), CCSD, CCSD(T), and MRD-CI levels of theory show that the reaction is characterized by a low electronic barrier; excluding the effects of spin-orbit splitting in Cl, our best estimate at the MRD-CI/aug-cc-pVTZ//RHF-RCCSD(T)/aug-cc-pVTZ level of theory predicts a Born-Oppenheimer barrier height of 0.7 kJ mol-1. The energies of the lowest six electronic states as resulting from MRD-CI calculations are presented at discrete points along the reaction path, and two avoided crossings are found in the transition state region. The spin-orbit splitting in Cl is also calculated along the reaction path; it is not negligible in the transition state region and is found to increase the barrier by only 1.4 kJ mol-1 at the RCCSD(T)/aug-cc-pVTZ transition state geometry. The minimum energy path of the reaction connects an energetically weakly stabilized adduct on the flat potential surface on the reactant side and an energetically strongly stabilized postreaction adduct. The reaction rate coefficient and the kinetic isotope effects were calculated using improved canonical variational theory with small curvature tunneling (ICVT/SCT), and the results were compared to experimental data. The experimental reaction rate coefficient is reproduced within its uncertainty limits by variational transition state theory with interpolated single-point energy corrections (ISPE) at the MP4(SDTQ) level of theory and by conventional transition state theory with interpolated optimized energies (IOE) at the MRD-CI//RCCSD(T) level of theory and interpolated optimized geometries at the RCCSD(T) level of theory on an MP2/aug-cc-pVTZ potential energy surface when employing scaled vibrational frequencies.
已通过从头算方法研究了氯原子与甲醛之间的基元气相反应。在MP2、MP3、MP4(SDTQ)、CCSD、CCSD(T)和MRD - CI理论水平上的计算表明,该反应的特征是电子势垒较低;排除氯中自旋 - 轨道分裂的影响,我们在MRD - CI/aug - cc - pVTZ//RHF - RCCSD(T)/aug - cc - pVTZ理论水平上的最佳估计预测,玻恩 - 奥本海默势垒高度为0.7 kJ/mol。沿反应路径的离散点给出了MRD - CI计算得到的最低六个电子态的能量,并且在过渡态区域发现了两个避免交叉。还沿反应路径计算了氯中的自旋 - 轨道分裂;它在过渡态区域不可忽略,并且发现在RCCSD(T)/aug - cc - pVTZ过渡态几何结构下仅使势垒增加1.4 kJ/mol。反应的最小能量路径连接反应物一侧平坦势能面上能量较弱稳定的加合物和能量较强稳定的反应后加合物。使用改进的正则变分理论和小曲率隧道效应(ICVT/SCT)计算了反应速率系数和动力学同位素效应,并将结果与实验数据进行了比较。在理论的MP4(SDTQ)水平上,通过具有内插单点能量校正的变分过渡态理论(ISPE),以及在MRD - CI//RCCSD(T)理论水平上通过具有内插优化能量的传统过渡态理论(IOE),并在MP2/aug - cc - pVTZ势能面上使用缩放振动频率的RCCSD(T)理论水平上的内插优化几何结构,实验反应速率系数在其不确定度范围内得到了重现。