Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-106, USA.
J Phys Chem A. 2009 Mar 12;113(10):1976-84. doi: 10.1021/jp808146c.
Electronic structure theory calculations, using MP2 theory and the DFT functionals OPBE, OLYP, HCTH407, BhandH, and B97-1, were performed to characterize the structures, vibrational frequencies, and energies for stationary points on the Cl(-) + CH(3)I --> ClCH(3) + I(-) potential energy surface. The aug-cc-pVDZ and aug-cc-pVTZ basis sets, with an effective core potential (ECP) for iodine, were employed. Single-point CCSD(T) calculations were performed to obtain the complete basis set (CBS) limit for the reaction energies. DFT was found to give significantly longer halide ion/carbon atom bond lengths for the ion-dipole complexes and central barrier transition state than MP2. BhandH, with either the aug-cc-pVDZ or aug-cc-pVTZ basis sets, gives good agreement with the experimental structures for both CH(3)I and CH(3)Cl. The frequencies of CH(3)I and CH(3)Cl, obtained with the different levels of theory and basis sets, are in excellent agreement with experiment. The major difference between the MP2 and DFT frequencies is for the imaginary frequency of the central barrier. Using the aug-cc-pVTZ basis the MP2 value for this frequency ranges from 1.26 to 1.59 times larger than those for the DFT functionals. Thus, the MP2 and DFT theories have different PES shapes in the vicinity of the Cl--CH(3)--I central barrier. The CCSD(T)/CBS energies are in good agreement with experiments for the complexation energies and reaction exothermicity, with a small 1 kcal/mol difference for the latter. The CCSD(T)/CBS central barrier height is lower than values deduced by using statistical theoretical models to fit the Cl(-) + CH(3)I --> ClCH(3) + I(-) experimental rate constant, which is consistent with the expected nonstatistical dynamics for the reaction. The BhandH energies are in overall best agreement with the CCSD(T) values, with a largest difference of only 0.7 kcal/mol.
采用 MP2 理论和 DFT 泛函 OPBE、OLYP、HCTH407、BhandH 和 B97-1 对 Cl(-) + CH(3)I → ClCH(3) + I(-) 势能面上的稳定点的结构、振动频率和能量进行了电子结构理论计算。使用了 aug-cc-pVDZ 和 aug-cc-pVTZ 基组,并对碘采用了有效核势 (ECP)。进行了单点 CCSD(T)计算以获得反应能量的完全基组 (CBS) 极限。与 MP2 相比,DFT 为离子偶极复合物和中心势垒过渡态中的卤化物离子/碳原子键长给出了显著更长的结果。BhandH,无论是使用 aug-cc-pVDZ 还是 aug-cc-pVTZ 基组,对于 CH(3)I 和 CH(3)Cl 的实验结构都给出了很好的一致性。不同理论和基组得到的 CH(3)I 和 CH(3)Cl 的频率与实验结果非常吻合。MP2 和 DFT 频率之间的主要区别在于中心势垒的虚频。使用 aug-cc-pVTZ 基组,MP2 对该频率的值范围比 DFT 泛函大 1.26 到 1.59 倍。因此,MP2 和 DFT 理论在 Cl--CH(3)--I 中心势垒附近具有不同的 PES 形状。CCSD(T)/CBS 能量与实验值在复合物形成能和反应放热方面非常吻合,后者仅相差 1 kcal/mol。CCSD(T)/CBS 中心势垒高度低于使用统计理论模型拟合 Cl(-) + CH(3)I → ClCH(3) + I(-) 实验速率常数得出的值,这与反应的预期非统计动力学一致。BhandH 能量与 CCSD(T)值总体上最为吻合,最大差异仅为 0.7 kcal/mol。