Suppr超能文献

动物谷氨酰胺环化酶催化中心的保守氢键网络对催化作用至关重要。

A conserved hydrogen-bond network in the catalytic centre of animal glutaminyl cyclases is critical for catalysis.

作者信息

Huang Kai-Fa, Wang Yu-Ruei, Chang En-Cheng, Chou Tsung-Lin, Wang Andrew H-J

机构信息

Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.

出版信息

Biochem J. 2008 Apr 1;411(1):181-90. doi: 10.1042/BJ20071073.

Abstract

QCs (glutaminyl cyclases; glutaminyl-peptide cyclotransferases, EC 2.3.2.5) catalyse N-terminal pyroglutamate formation in numerous bioactive peptides and proteins. The enzymes were reported to be involved in several pathological conditions such as amyloidotic disease, osteoporosis, rheumatoid arthritis and melanoma. The crystal structure of human QC revealed an unusual H-bond (hydrogen-bond) network in the active site, formed by several highly conserved residues (Ser(160), Glu(201), Asp(248), Asp(305) and His(319)), within which Glu(201) and Asp(248) were found to bind to substrate. In the present study we combined steady-state enzyme kinetic and X-ray structural analyses of 11 single-mutation human QCs to investigate the roles of the H-bond network in catalysis. Our results showed that disrupting one or both of the central H-bonds, i.e., Glu(201)...Asp(305) and Asp(248)...Asp(305), reduced the steady-state catalysis dramatically. The roles of these two COOH...COOH bonds on catalysis could be partly replaced by COOH...water bonds, but not by COOH...CONH(2) bonds, reminiscent of the low-barrier Asp...Asp H-bond in the active site of pepsin-like aspartic peptidases. Mutations on Asp(305), a residue located at the centre of the H-bond network, raised the K(m) value of the enzyme by 4.4-19-fold, but decreased the k(cat) value by 79-2842-fold, indicating that Asp(305) primarily plays a catalytic role. In addition, results from mutational studies on Ser(160) and His(319) suggest that these two residues might help to stabilize the conformations of Asp(248) and Asp(305) respectively. These data allow us to propose an essential proton transfer between Glu(201), Asp(305) and Asp(248) during the catalysis by animal QCs.

摘要

谷氨酰胺环化酶(QCs;谷氨酰胺基肽环转移酶,EC 2.3.2.5)催化众多生物活性肽和蛋白质中N端焦谷氨酸的形成。据报道,这些酶参与了多种病理状况,如淀粉样变性疾病、骨质疏松症、类风湿性关节炎和黑色素瘤。人类QC的晶体结构揭示了活性位点中一个不同寻常的氢键网络,该网络由几个高度保守的残基(Ser(160)、Glu(201)、Asp(248)、Asp(305)和His(319))形成,其中发现Glu(201)和Asp(248)与底物结合。在本研究中,我们结合了11种单突变人类QC的稳态酶动力学和X射线结构分析,以研究氢键网络在催化中的作用。我们的结果表明,破坏一个或两个中心氢键,即Glu(201)…Asp(305)和Asp(248)…Asp(305),会显著降低稳态催化作用。这两个COOH…COOH键在催化中的作用可部分被COOH…水键取代,但不能被COOH…CONH(2)键取代,这让人联想到胃蛋白酶样天冬氨酸肽酶活性位点中的低势垒Asp…Asp氢键。位于氢键网络中心的Asp(305)发生突变,使酶的K(m)值提高了4.4至19倍,但使k(cat)值降低了79至2842倍,表明Asp(305)主要起催化作用。此外,对Ser(160)和His(319)的突变研究结果表明,这两个残基可能分别有助于稳定Asp(248)和Asp(305)的构象。这些数据使我们能够提出,在动物QC催化过程中,Glu(201)、Asp(305)和Asp(248)之间存在关键的质子转移。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验