Suppr超能文献

种间有袋类杂种着丝粒内的基因组不稳定性。

Genomic instability within centromeres of interspecific marsupial hybrids.

作者信息

Metcalfe Cushla J, Bulazel Kira V, Ferreri Gianni C, Schroeder-Reiter Elizabeth, Wanner Gerhard, Rens Willem, Obergfell Craig, Eldridge Mark D B, O'Neill Rachel J

机构信息

Department of Molecular and Cell Biology, University of Connecticut, Storrs 06269, USA.

出版信息

Genetics. 2007 Dec;177(4):2507-17. doi: 10.1534/genetics.107.082313.

Abstract

Several lines of evidence suggest that, within a lineage, particular genomic regions are subject to instability that can lead to specific types of chromosome rearrangements important in species incompatibility. Within family Macropodidae (kangaroos, wallabies, bettongs, and potoroos), which exhibit recent and extensive karyotypic evolution, rearrangements involve chiefly the centromere. We propose that centromeres are the primary target for destabilization in cases of genomic instability, such as interspecific hybridization, and participate in the formation of novel chromosome rearrangements. Here we use standard cytological staining, cross-species chromosome painting, DNA probe analyses, and scanning electron microscopy to examine four interspecific macropodid hybrids (Macropus rufogriseus x Macropus agilis). The parental complements share the same centric fusions relative to the presumed macropodid ancestral karyotype, but can be differentiated on the basis of heterochromatic content, M. rufogriseus having larger centromeres with large C-banding positive regions. All hybrids exhibited the same pattern of chromosomal instability and remodeling specifically within the centromeres derived from the maternal (M. rufogriseus) complement. This instability included amplification of a satellite repeat and a transposable element, changes in chromatin structure, and de novo whole-arm rearrangements. We discuss possible reasons and mechanisms for the centromeric instability and remodeling observed in all four macropodid hybrids.

摘要

多条证据表明,在一个谱系中,特定的基因组区域容易发生不稳定,这可能导致特定类型的染色体重排,而这些重排在物种不相容性方面很重要。在大袋鼠科(袋鼠、沙袋鼠、麝袋鼠和长鼻袋鼠)中,它们表现出近期广泛的核型进化,重排主要涉及着丝粒。我们提出,在基因组不稳定的情况下,如种间杂交,着丝粒是不稳定的主要靶点,并参与新的染色体重排的形成。在这里,我们使用标准细胞学染色、跨物种染色体涂染、DNA探针分析和扫描电子显微镜来研究四种大袋鼠科种间杂种(赤褐大袋鼠×敏捷大袋鼠)。相对于假定的大袋鼠科祖先核型,亲本的染色体组具有相同的着丝粒融合,但可以根据异染色质含量进行区分,赤褐大袋鼠的着丝粒较大,C带阳性区域也较大。所有杂种在源自母本(赤褐大袋鼠)染色体组的着丝粒内均表现出相同的染色体不稳定和重塑模式。这种不稳定包括卫星重复序列和转座元件的扩增、染色质结构的变化以及从头发生的全臂重排。我们讨论了在所有四种大袋鼠科杂种中观察到的着丝粒不稳定和重塑的可能原因及机制。

相似文献

1
Genomic instability within centromeres of interspecific marsupial hybrids.
Genetics. 2007 Dec;177(4):2507-17. doi: 10.1534/genetics.107.082313.
5
Centromere dynamics and chromosome evolution in marsupials.
J Hered. 2004 Sep-Oct;95(5):375-81. doi: 10.1093/jhered/esh063.
10
Centromere Repeats: Hidden Gems of the Genome.
Genes (Basel). 2019 Mar 16;10(3):223. doi: 10.3390/genes10030223.

引用本文的文献

2
Hybrid adaptation is hampered by Haldane's sieve.
Nat Commun. 2024 Nov 28;15(1):10319. doi: 10.1038/s41467-024-54105-4.
3
Mechanisms of Rapid Karyotype Evolution in Mammals.
Genes (Basel). 2023 Dec 31;15(1):62. doi: 10.3390/genes15010062.
4
Additive and non-additive epigenetic signatures of natural hybridization between fish species with different mating systems.
Epigenetics. 2022 Dec;17(13):2356-2365. doi: 10.1080/15592294.2022.2123014. Epub 2022 Sep 15.
5
B Chromosomes in Free-Living Flatworms of the Genus (Platyhelminthes, Macrostomorpha).
Int J Mol Sci. 2021 Dec 19;22(24):13617. doi: 10.3390/ijms222413617.
6
P-elements strengthen reproductive isolation within the Drosophila simulans species complex.
Evolution. 2021 Oct;75(10):2425-2440. doi: 10.1111/evo.14319. Epub 2021 Sep 1.
8
Transposable elements in .
Mob DNA. 2020 Jul 3;11:23. doi: 10.1186/s13100-020-00213-z. eCollection 2020.
10
Super-Resolution Microscopy Reveals Diversity of Plant Centromere Architecture.
Int J Mol Sci. 2020 May 15;21(10):3488. doi: 10.3390/ijms21103488.

本文引用的文献

1
CHROMOSOME MORPHOLOGY IN ZEA MAYS.
Science. 1929 Jun 14;69(1798):629. doi: 10.1126/science.69.1798.629.
3
Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila.
Cell. 2007 Mar 23;128(6):1089-103. doi: 10.1016/j.cell.2007.01.043. Epub 2007 Mar 8.
4
Heterochromatin revisited.
Nat Rev Genet. 2007 Jan;8(1):35-46. doi: 10.1038/nrg2008.
5
Is mammalian chromosomal evolution driven by regions of genome fragility?
Genome Biol. 2006;7(12):R115. doi: 10.1186/gb-2006-7-12-r115.
6
Genome expansion in three hybrid sunflower species is associated with retrotransposon proliferation.
Curr Biol. 2006 Oct 24;16(20):R872-3. doi: 10.1016/j.cub.2006.09.020.
7
Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function.
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8709-14. doi: 10.1073/pnas.0508006103. Epub 2006 May 26.
9
Hybrid genome evolution by transposition.
Cytogenet Genome Res. 2005;110(1-4):49-55. doi: 10.1159/000084937.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验