Suppr超能文献

效率校正实时荧光定量PCR的统计方法。

Statistical methods for efficiency adjusted real-time PCR quantification.

作者信息

Yuan Joshua S, Wang Donglin, Stewart C Neal

机构信息

UTIA Genomics Hub, The University of Tennessee, Knoxville, TN 37996, USA.

出版信息

Biotechnol J. 2008 Jan;3(1):112-23. doi: 10.1002/biot.200700169.

Abstract

The statistical treatment for hypothesis testing using real-time PCR data is a challenge for quantification of gene expression. One has to consider two key factors in precise statistical analysis of real-time PCR data: a well-defined statistical model and the integration of amplification efficiency (AE) into the model. Previous publications in real-time PCR data analysis often fall short in integrating the AE into the model. Novel, user-friendly, and universal AE-integrated statistical methods were developed for real-time PCR data analysis with four goals. First, we addressed the definition of AE, introduced the concept of efficiency-adjusted Delta Delta Ct, and developed a general mathematical method for its calculation. Second, we developed several linear combination approaches for the estimation of efficiency adjusted Delta Delta Ct and statistical significance for hypothesis testing based on different mathematical formulae and experimental designs. Statistical methods were also adopted to estimate the AE and its equivalence among the samples. A weighted Delta Delta Ct method was introduced to analyze the data with multiple internal controls. Third, we implemented the linear models with SAS programs and analyzed a set of data for each model. In order to allow other researchers to use and compare different approaches, SAS programs are included in the Supporting Information. Fourth, the results from analysis of different statistical models were compared and discussed. Our results underline the differences between the efficiency adjusted Delta Delta Ct methods and previously published methods, thereby better identifying and controlling the source of errors introduced by real-time PCR data analysis.

摘要

使用实时定量PCR数据进行假设检验的统计处理是基因表达定量分析中的一项挑战。在对实时定量PCR数据进行精确的统计分析时,必须考虑两个关键因素:一个定义明确的统计模型以及将扩增效率(AE)纳入该模型。先前关于实时定量PCR数据分析的出版物在将AE纳入模型方面往往有所欠缺。为实现四个目标,我们开发了新颖、用户友好且通用的整合AE的统计方法用于实时定量PCR数据分析。首先,我们明确了AE的定义,引入了效率校正的ΔΔCt概念,并开发了一种通用的数学计算方法。其次,我们基于不同的数学公式和实验设计,开发了几种用于估计效率校正的ΔΔCt以及假设检验统计显著性的线性组合方法。还采用统计方法来估计AE及其在样本间的等效性。引入了加权ΔΔCt方法来分析具有多个内参的数据。第三,我们用SAS程序实现了线性模型,并对每个模型的一组数据进行了分析。为了让其他研究人员能够使用和比较不同方法,支持信息中包含了SAS程序。第四,对不同统计模型的分析结果进行了比较和讨论。我们的结果强调了效率校正的ΔΔCt方法与先前发表的方法之间的差异,从而更好地识别和控制实时定量PCR数据分析引入的误差来源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验