Kuwasako Kanako, Dohmae Naoshi, Inoue Mio, Shirouzu Mikako, Taguchi Seiichi, Güntert Peter, Séraphin Bertrand, Muto Yutaka, Yokoyama Shigeyuki
Protein Research Group, RIKEN Genomic Sciences Center, Yokohama 230-0045, Japan.
Proteins. 2008 Jun;71(4):1617-36. doi: 10.1002/prot.21839.
The spliceosomal protein p14, a component of the SF3b complex in the U2 small nuclear ribonucleoprotein (snRNP), is essential for the U2 snRNP to recognize the branch site adenosine. The elucidation of the dynamic process of the splicing machinery rearrangement awaited the solution structural information. We identified a suitable complex of human p14 and the SF3b155 fragment for the determination of its solution structure by NMR. In addition to the overall structure of the complex, which was recently reported in a crystallographic study (typical RNA recognition motif fold beta1-alpha1-beta2-beta3-alpha2-beta4 of p14, and alphaA-betaA fold of the SF3b155 fragment), we identified three important features revealed by the NMR solution structure. First, the C-terminal extension and the nuclear localization signal of p14 (alpha3 and alpha4 in the crystal structure, respectively) were dispensable for the complex formation. Second, the proline-rich segment of SF3b155, following betaA, closely approaches p14. Third, interestingly, the beta1-alpha1 loop and the alpha2-beta4 beta-hairpin form a positively charged groove. Extensive mutagenesis analyses revealed the functional relevance of the residues involved in the protein-protein interactions: two aromatic residues of SF3b155 (Phe408 and Tyr412) play crucial roles in the complex formation, and two hydrophobic residues (Val414 and Leu415) in SF3b 155 serve as an anchor for the complex formation, by cooperating with the aromatic residues. These findings clearly led to the conclusion that SFb155 binds to p14 with three contact points, involving Phe408, Tyr412, and Val414/Leu415. Furthermore, to dissect the interactions between p14 and the branch site RNA, we performed chemical-shift-perturbation experiments, not only for the main-chain but also for the side-chain resonances, for several p14-SF3b155 complex constructs upon binding to RNA. These analyses identified a positively charged groove and the C-terminal extension of p14 as RNA-binding sites. Strikingly, an aromatic residue in the beta1-alpha1 loop, Tyr28, and a positively charged residue in the alpha2-beta4 beta-hairpin, Agr85, are critical for the RNA-binding activity of the positively charged groove. The Tyr28Ala and Arg85Ala point mutants and a deletion mutant of the C-terminal extension clearly revealed that their RNA binding activities were independent of each other. Collectively, this study provides details for the protein-recognition mode of p14 and insight into the branch site recognition.
剪接体蛋白p14是U2小核核糖核蛋白(snRNP)中SF3b复合物的一个组成部分,对于U2 snRNP识别分支位点腺苷至关重要。剪接机制重排动态过程的阐明有待于溶液结构信息的解决。我们鉴定出一种适合用于通过核磁共振确定其溶液结构的人p14与SF3b155片段的复合物。除了该复合物的整体结构(最近在一项晶体学研究中报道,p14具有典型的RNA识别基序折叠β1-α1-β2-β3-α2-β4,SF3b155片段具有αA-βA折叠)外,我们还通过核磁共振溶液结构鉴定出三个重要特征。首先,p14的C末端延伸和核定位信号(分别为晶体结构中的α3和α4)对于复合物形成并非必需。其次,SF3b155富含脯氨酸的片段在βA之后紧密靠近p14。第三,有趣的是,β1-α1环和α2-β4β-发夹形成一个带正电荷的凹槽。广泛的诱变分析揭示了参与蛋白质-蛋白质相互作用的残基的功能相关性:SFb155的两个芳香族残基(Phe408和Tyr412)在复合物形成中起关键作用,SF3b 155中的两个疏水残基(Val414和Leu415)通过与芳香族残基协同作用,作为复合物形成的锚定。这些发现清楚地得出结论,即SFb155通过涉及Phe408、Tyr412和Val414/Leu415的三个接触点与p14结合。此外,为了剖析p14与分支位点RNA之间的相互作用,我们对几种与RNA结合的p14-SF3b155复合物构建体进行了化学位移扰动实验,不仅针对主链,还针对侧链共振。这些分析确定了一个带正电荷的凹槽和p14的C末端延伸作为RNA结合位点。令人惊讶的是,β1-α1环中的一个芳香族残基Tyr28和α2-β4β-发夹中的一个带正电荷的残基Arg85对于带正电荷凹槽的RNA结合活性至关重要。Tyr28Ala和Arg85Ala点突变体以及C末端延伸的缺失突变体清楚地表明它们的RNA结合活性彼此独立。总体而言,这项研究提供了p14蛋白质识别模式的详细信息,并深入了解了分支位点识别。