Popp David, Yamamoto Akihiro, Iwasa Mitsusada, Nitanai Yasushi, Maéda Yuichiro
ERATO Actin Filament Dynamics Project, Japan Science and Technology Corporation, c/o RIKEN Harima Institute at Spring 8, Kouto, Sayo, Hyogo 679-5148, Japan.
Cell Motil Cytoskeleton. 2008 Feb;65(2):165-77. doi: 10.1002/cm.20252.
Salmonella bacteria cause more than three million deaths each year. They hijack cells and inject among other proteins SipA via a "molecular syringe" into the cell, which can tether actin subunits in opposing strands to form mechanically stabilized filaments which rapidly reshape the cells surface into extended ruffles, leading to bacterial internalization. Exactly how these ruffles form at a single filament level remains unknown. Our real time total internal fluorescence microscopy observations show that both bidirectional elongation of actin by SipA as well as end-to-end annealing of SipA-actin filaments are rapid processes. Complementary electron microscopy investigations demonstrate that crowding agents in vitro readily induce stiff bundles of SipA-actin filaments. Taken together these three effects, rapid SipA induced actin polymerization, filament annealing and bundle formation due to molecular crowding can explain how Salmonella invades cells at molecular level.
沙门氏菌每年导致超过三百万人死亡。它们劫持细胞,并通过“分子注射器”将包括SipA在内的其他蛋白质注入细胞,SipA能将肌动蛋白亚基拴在相反的链中,形成机械稳定的细丝,从而迅速将细胞表面重塑为延伸的褶皱,导致细菌内化。这些褶皱如何在单细丝水平上形成仍然未知。我们的实时全内荧光显微镜观察表明,SipA使肌动蛋白双向延伸以及SipA-肌动蛋白细丝的端对端退火都是快速过程。补充电子显微镜研究表明,体外拥挤剂很容易诱导形成坚硬的SipA-肌动蛋白细丝束。综合这三种效应,即SipA诱导的快速肌动蛋白聚合、细丝退火以及由于分子拥挤导致的束形成,可以解释沙门氏菌如何在分子水平上侵入细胞。