Wheat Christopher W, Vogel Heiko, Wittstock Ute, Braby Michael F, Underwood Dessie, Mitchell-Olds Thomas
Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans Knoell Strasse 8, 07745 Jena, Germany.
Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20427-31. doi: 10.1073/pnas.0706229104. Epub 2007 Dec 11.
Ehrlich and Raven formally introduced the concept of stepwise coevolution using butterfly and angiosperm interactions in an attempt to account for the impressive biological diversity of these groups. However, many biologists currently envision butterflies evolving 50 to 30 million years (Myr) after the major angiosperm radiation and thus reject coevolutionary origins of butterfly biodiversity. The unresolved central tenet of Ehrlich and Raven's theory is that evolution of plant chemical defenses is followed closely by biochemical adaptation in insect herbivores, and that newly evolved detoxification mechanisms result in adaptive radiation of herbivore lineages. Using one of their original butterfly-host plant systems, the Pieridae, we identify a pierid glucosinolate detoxification mechanism, nitrile-specifier protein (NSP), as a key innovation. Larval NSP activity matches the distribution of glucosinolate in their host plants. Moreover, by using five different temporal estimates, NSP seems to have evolved shortly after the evolution of the host plant group (Brassicales) ( approximately 10 Myr). An adaptive radiation of these glucosinolate-feeding Pierinae followed, resulting in significantly elevated species numbers compared with related clades. Mechanistic understanding in its proper historical context documents more ancient and dynamic plant-insect interactions than previously envisioned. Moreover, these mechanistic insights provide the tools for detailed molecular studies of coevolution from both the plant and insect perspectives.
埃利希和雷文正式引入了逐步协同进化的概念,以蝴蝶与被子植物的相互作用为例,试图解释这些类群令人惊叹的生物多样性。然而,许多生物学家目前认为蝴蝶是在被子植物主要辐射演化5000万至3000万年后才开始演化的,因此拒绝接受蝴蝶生物多样性的协同进化起源观点。埃利希和雷文理论中尚未解决的核心原则是,植物化学防御的进化紧接着食草昆虫的生化适应,并且新进化出的解毒机制导致了食草动物谱系的适应性辐射。我们利用他们最初研究的一个蝴蝶-寄主植物系统——粉蝶科,鉴定出一种粉蝶硫代葡萄糖苷解毒机制,即腈特异性蛋白(NSP),它是一项关键创新。幼虫的NSP活性与硫代葡萄糖苷在其寄主植物中的分布相匹配。此外,通过使用五种不同的时间估计方法,NSP似乎是在寄主植物类群(十字花目)进化后不久(约1000万年前)演化出来的。随后,以这些硫代葡萄糖苷为食的粉蝶亚科出现了适应性辐射,与相关分支相比,物种数量显著增加。在恰当的历史背景下对机制的理解记录了比之前设想更为古老和动态的植物-昆虫相互作用。此外,这些机制上的见解为从植物和昆虫两个角度对协同进化进行详细的分子研究提供了工具。