Suppr超能文献

使用匹配病例对照数据进行基于单倍型的关联分析的条件似然方法。

Conditional likelihood methods for haplotype-based association analysis using matched case-control data.

作者信息

Chen Jinbo, Rodriguez Carmen

机构信息

Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 6120 Executive Boulevard, Rockville, Maryland 20852, USA.

出版信息

Biometrics. 2007 Dec;63(4):1099-107. doi: 10.1111/j.1541-0420.2007.00797.x.

Abstract

Genetic epidemiologists routinely assess disease susceptibility in relation to haplotypes, that is, combinations of alleles on a single chromosome. We study statistical methods for inferring haplotype-related disease risk using single nucleotide polymorphism (SNP) genotype data from matched case-control studies, where controls are individually matched to cases on some selected factors. Assuming a logistic regression model for haplotype-disease association, we propose two conditional likelihood approaches that address the issue that haplotypes cannot be inferred with certainty from SNP genotype data (phase ambiguity). One approach is based on the likelihood of disease status conditioned on the total number of cases, genotypes, and other covariates within each matching stratum, and the other is based on the joint likelihood of disease status and genotypes conditioned only on the total number of cases and other covariates. The joint-likelihood approach is generally more efficient, particularly for assessing haplotype-environment interactions. Simulation studies demonstrated that the first approach was more robust to model assumptions on the diplotype distribution conditioned on environmental risk variables and matching factors in the control population. We applied the two methods to analyze a matched case-control study of prostate cancer.

摘要

遗传流行病学家通常会根据单倍型(即单条染色体上等位基因的组合)来评估疾病易感性。我们研究了一些统计方法,用于利用匹配病例对照研究中的单核苷酸多态性(SNP)基因型数据推断与单倍型相关的疾病风险,在这种研究中,对照是根据某些选定因素与病例进行个体匹配的。假设存在单倍型与疾病关联的逻辑回归模型,我们提出了两种条件似然方法,以解决从SNP基因型数据无法确定推断单倍型(相位模糊性)的问题。一种方法基于每个匹配层内病例总数、基因型和其他协变量条件下疾病状态的似然性,另一种方法基于仅以病例总数和其他协变量为条件的疾病状态和基因型的联合似然性。联合似然方法通常更有效,特别是在评估单倍型与环境的相互作用时。模拟研究表明,第一种方法对于基于对照人群中的环境风险变量和匹配因素的双倍型分布的模型假设更具稳健性。我们应用这两种方法分析了一项前列腺癌匹配病例对照研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验