Suppr超能文献

产甲烷原油生物降解的热力学限制

Thermodynamic constraints on methanogenic crude oil biodegradation.

作者信息

Dolfing Jan, Larter Stephen R, Head Ian M

机构信息

School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, UK.

出版信息

ISME J. 2008 Apr;2(4):442-52. doi: 10.1038/ismej.2007.111. Epub 2007 Dec 13.

Abstract

Methanogenic degradation of crude oil hydrocarbons is an important process in subsurface petroleum reservoirs and anoxic environments contaminated with petroleum. There are several possible routes whereby hydrocarbons may be converted to methane: (i) complete oxidation of alkanes to H2 and CO2, linked to methanogenesis from CO2 reduction; (ii) oxidation of alkanes to acetate and H2, linked to acetoclastic methanogenesis and CO2 reduction; (iii) oxidation of alkanes to acetate and H2, linked to syntrophic acetate oxidation and methanogenesis from CO2 reduction; (iv) oxidation of alkanes to acetate alone, linked to acetoclastic methanogenesis and (v) oxidation of alkanes to acetate alone, linked to syntrophic acetate oxidation and methanogenesis from CO2 reduction. We have developed the concept of a 'window of opportunity' to evaluate the range of conditions under which each route is thermodynamically feasible. On this basis the largest window of opportunity is presented by the oxidation of alkanes to acetate alone, linked to acetoclastic methanogenesis. This contradicts field-based evidence that indicates that in petroleum rich environments acetoclastic methanogenesis is inhibited and that methanogenic CO2 reduction is the predominant methanogenic process. Our analysis demonstrates that under those biological constraints oxidation of alkanes to acetate and H2, linked to syntrophic acetate oxidation and methanogenesis from CO2 reduction offers a greater window of opportunity than complete oxidation of alkanes to H2 and CO2 linked to methanogenic CO2 reduction, and hence is the process most likely to occur.

摘要

原油烃的产甲烷降解是地下油藏以及受石油污染的缺氧环境中的一个重要过程。烃类转化为甲烷有几种可能的途径:(i)烷烃完全氧化为H2和CO2,与由CO2还原产甲烷相联系;(ii)烷烃氧化为乙酸盐和H2,与乙酸裂解产甲烷和CO2还原相联系;(iii)烷烃氧化为乙酸盐和H2,与乙酸共生氧化和由CO2还原产甲烷相联系;(iv)烷烃仅氧化为乙酸盐,与乙酸裂解产甲烷相联系;以及(v)烷烃仅氧化为乙酸盐,与乙酸共生氧化和由CO2还原产甲烷相联系。我们提出了“机会窗口”的概念,以评估每种途径在热力学上可行的条件范围。在此基础上,仅将烷烃氧化为乙酸盐并与乙酸裂解产甲烷相联系的途径具有最大的机会窗口。这与基于现场的证据相矛盾,该证据表明在富含石油的环境中,乙酸裂解产甲烷受到抑制,而CO2还原产甲烷是主要的产甲烷过程。我们的分析表明,在这些生物学限制条件下,与乙酸共生氧化和由CO2还原产甲烷相联系的将烷烃氧化为乙酸盐和H2的途径比与CO2还原产甲烷相联系的将烷烃完全氧化为H2和CO2的途径提供了更大的机会窗口,因此是最有可能发生的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验