Bernardi Alessandro, Femoni Cristina, Iapalucci Maria Carmela, Longoni Giuliano, Ranuzzi Fabrizio, Zacchini Stefano, Zanello Piero, Fedi Serena
Dipartimento di Chimica Fisica ed Inorganica, Università di Bologna, Viale Risorgimento 4-40136 Bologna, Italy.
Chemistry. 2008;14(6):1924-34. doi: 10.1002/chem.200701519.
Reaction of the Ni(9)C(CO)(17) dianion with CdCl(2)2.5 H(2)O in THF affords the novel bimetallic Ni--Cd carbide carbonyl clusters H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2) (n=3-6), which undergo several protonation-deprotonation equilibria in solution depending on the basicity of the solvent or upon addition of acids or bases. Although the occurrence in solution of these equilibria complicates the pertinent electrochemical studies on their electron-transfer activity, they clearly indicate that the clusters H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2) (n=3-6), as well as the structurally related H(6-n)Ni(34)C(4)(CO)(38) (n=4-6), undergo reversible or partially reversible redox processes and provide circumstantial and unambiguous evidence for the presence of hydrides for n=3, 4 and 5. Three of the H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2) anions (n=4-6) have been structurally characterized in their NMe(3)(CH(2)Ph)[H(2)Ni(30)C(4)(CO)(34)(CdCl)(2)]2 COMe(2), NEt(4)[HNi(30)C(4)(CO)(34)(CdCl)(2)]2 MeCN and NMe(4)[Ni(30)C(4)(CO)(34)(CdCl)(2)]6 MeCN salts, respectively. All three anions display almost identical geometries and bonding parameters, probably because charge effects are minimized by delocalization over such a large metal carbonyl anion. Moreover, the Ni(30)C(4) core in these Ni-Cd carbide clusters is identical within experimental error to those present in the HNi(34)C(4)(CO)(38) and Ni(35)C(4)(CO)(39) species, suggesting that the stepwise assembly of their nickel carbide cores may represent a general pathway of growth of nickel polycarbide clusters. The fact that the H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)(n=4-6) anions display two valence electrons more than the structurally related H(6-n)Ni(34)C(4)(CO)(38) (n=4-6) species has been rationalized by extended Hückel molecular orbital (EHMO) analysis.
在四氢呋喃中,[Ni(9)C(CO)(17)]²⁻二价阴离子与CdCl₂·2.5H₂O反应生成新型双金属镍 - 镉碳化物羰基簇合物[H(6 - n)Ni(30)C(4)(CO)(34)(μ₅ - CdCl)₂]ⁿ⁻(n = 3 - 6),根据溶剂的碱性或添加酸或碱的情况,这些簇合物在溶液中会经历多个质子化 - 去质子化平衡。尽管这些平衡在溶液中的存在使关于它们电子转移活性的相关电化学研究变得复杂,但它们清楚地表明,簇合物[H(6 - n)Ni(30)C(4)(CO)(34)(μ₅ - CdCl)₂]ⁿ⁻(n = 3 - 6)以及结构相关的[H(6 - n)Ni(34)C(4)(CO)(38)]ⁿ⁻(n = 4 - 6)会经历可逆或部分可逆的氧化还原过程,并为n = 3、4和5时氢化物的存在提供了间接且明确的证据。[H(6 - n)Ni(30)C(4)(CO)(34)(μ₅ - CdCl)₂]ⁿ⁻阴离子中的三种(n = 4 - 6)已在它们的[NMe₃(CH₂Ph)]₄[H₂Ni(30)C(4)(CO)(34)(CdCl)₂]·2COMe₂、[NEt₄]₅[HNi(30)C(4)(CO)(34)(CdCl)₂]·2MeCN和[NMe₄]₆[Ni(30)C(4)(CO)(34)(CdCl)₂]·6MeCN盐中得到结构表征。所有这三种阴离子都显示出几乎相同的几何形状和键合参数,这可能是因为电荷效应通过在如此大的金属羰基阴离子上离域而最小化。此外,这些镍 - 镉碳化物簇中的Ni₃₀C₄核心在实验误差范围内与[HNi₃₄C₄(CO)₃₈]⁵⁻和[Ni₃₅C₄(CO)₃₉]⁶⁻物种中的核心相同,这表明它们的碳化镍核心的逐步组装可能代表了多碳化镍簇生长的一般途径。通过扩展休克尔分子轨道(EHMO)分析,已对[H(6 - n)Ni(30)C(4)(CO)(34)(μ₅ - CdCl)₂]ⁿ⁻(n = 4 - 6)阴离子比结构相关的[H(6 - n)Ni(34)C(4)(CO)(38)]ⁿ⁻(n = 4 - 6)物种多两个价电子这一事实进行了合理解释。