Staii Cristian, Wood David W, Scoles Giacinto
Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
J Am Chem Soc. 2008 Jan 16;130(2):640-6. doi: 10.1021/ja076157+.
We demonstrate that the Atomic Force Microscope (AFM) can be used to immobilize a dicysteine-terminated protein (Maltose Binding Protein, MBP-cys-cys for short) at well-defined locations directly on gold substrates via nanografting and characterize the in situ bioactivity of these proteins within the fabricated nanopatterns. This method exploits the high spatial and orientational control of the protein monolayer assembly allowed by nanografting, combined with the high sensitivity of the AFM for detecting ligand-binding events. The maltose-mediated conformational changes within the MBP have been found to change the AFM-tip-protein interaction, therefore causing the frictional signal to change. Our measurements show that the protein ligand-binding function is maintained upon the immobilization process and is not affected by (a) the addition of the cysteine dipeptide, (b) the spatial confinement associated with nanografting, and (c) the interaction between the protein and the Au substrate. These surface-confined proteins can also be regenerated, and their frictional response is reproducible through several maltose exposure/washing cycles. By measuring the change in the frictional force above the protein nanopatterns as a function of maltose concentration, we determined the dissociation constant for the MBP-cys-cys/maltose system to be kd = (1 +/- 0.04) microM. Our results show that the MBP-cys-cys system provides a very sensitive surface-based, protein nanobiosensor for maltose detection at the attogram level (approximately 100 nM concentration). The implications of our study for the fabrication of molecular-scale biological sensors are discussed at the end of the paper.
我们证明,原子力显微镜(AFM)可用于通过纳米接枝将双半胱氨酸末端蛋白(简称麦芽糖结合蛋白,MBP-cys-cys)直接固定在金基底上的特定位置,并表征这些蛋白在制备的纳米图案中的原位生物活性。该方法利用了纳米接枝允许的蛋白质单层组装的高空间和取向控制,以及AFM检测配体结合事件的高灵敏度。已发现MBP内麦芽糖介导的构象变化会改变AFM针尖与蛋白的相互作用,从而导致摩擦信号发生变化。我们的测量结果表明,蛋白质配体结合功能在固定过程中得以维持,并且不受以下因素影响:(a)半胱氨酸二肽的添加;(b)与纳米接枝相关的空间限制;(c)蛋白质与金基底之间的相互作用。这些表面受限的蛋白质也可以再生,并且通过几个麦芽糖暴露/洗涤循环,它们的摩擦响应是可重复的。通过测量蛋白质纳米图案上方摩擦力的变化作为麦芽糖浓度的函数,我们确定MBP-cys-cys/麦芽糖系统的解离常数为kd =(1±0.04)μM。我们的结果表明,MBP-cys-cys系统为阿托克水平(约100 nM浓度)的麦芽糖检测提供了一种非常灵敏的基于表面的蛋白质纳米生物传感器。本文结尾讨论了我们的研究对分子尺度生物传感器制造的意义。