Chung Sungwon, Pelletier Daniel, Sdika Michael, Lu Ying, Berman Jeffrey I, Henry Roland G
UCSF/UC Berkeley Joint Graduate Group in Bioengineering, CA, USA.
Neuroimage. 2008 Feb 15;39(4):1693-705. doi: 10.1016/j.neuroimage.2007.10.039. Epub 2007 Nov 7.
Diffusion tensor MRI (DTI) has been widely used to investigate brain microstructural changes in pathological conditions as well as for normal development and aging. In particular, longitudinal changes are vital to the understanding of progression but these studies are typically designed for specific regions of interest. To analyze changes in these regions traditional statistical methods are often employed to elucidate group differences which are measured against the variability found in a control cohort. However, in some cases, rather than collecting multiple subjects into two groups, it is necessary and more informative to analyze the data for individual subjects. There is also a need for understanding changes in a single subject without prior information regarding the spatial distribution of the pathology, but no formal statistical framework exists for these voxel-wise analyses of DTI. In this study, we present PERVADE (permutation voxel-wise analysis of diffusion estimates), a whole brain analysis method for detecting localized FA changes between two separate points in time of any given subject, without any prior hypothesis about where changes might occur. Exploiting the nature of DTI that it is calculated from multiple diffusion-weighted images of each region, permutation testing, a non-parametric hypothesis testing technique, was modified for the analysis of serial DTI data and implemented for voxel-wise hypothesis tests of diffusion metric changes, as well as for suprathreshold cluster analysis to correct for multiple comparisons. We describe PERVADE in detail and present results from Monte Carlo simulation supporting the validity of the technique as well as illustrative examples from a healthy subject and patients in the early stages of multiple sclerosis.
扩散张量磁共振成像(DTI)已被广泛用于研究病理状况下以及正常发育和衰老过程中的脑微结构变化。特别是,纵向变化对于理解疾病进展至关重要,但这些研究通常是针对特定感兴趣区域设计的。为了分析这些区域的变化,传统统计方法常常被用来阐明组间差异,这些差异是相对于在对照组中发现的变异性来衡量的。然而,在某些情况下,不是将多个受试者分为两组,而是分析个体受试者的数据既必要又更具信息量。还需要在没有关于病理空间分布的先验信息的情况下了解单个受试者的变化,但目前尚无用于这些DTI体素级分析的正式统计框架。在本研究中,我们提出了PERVADE(扩散估计的排列体素级分析),这是一种全脑分析方法,用于检测任何给定受试者在两个不同时间点之间的局部FA变化,而无需对可能发生变化的位置有任何先验假设。利用DTI是根据每个区域的多个扩散加权图像计算得出的这一特性,对排列检验(一种非参数假设检验技术)进行了修改,以用于分析连续DTI数据,并用于扩散度量变化的体素级假设检验以及用于校正多重比较的超阈值聚类分析。我们详细描述了PERVADE,并展示了蒙特卡罗模拟的结果,这些结果支持了该技术的有效性,以及来自一名健康受试者和多发性硬化症早期患者的示例。