Suppr超能文献

基于轨迹的空间统计学:多主体扩散数据的体素级分析。

Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data.

作者信息

Smith Stephen M, Jenkinson Mark, Johansen-Berg Heidi, Rueckert Daniel, Nichols Thomas E, Mackay Clare E, Watkins Kate E, Ciccarelli Olga, Cader M Zaheer, Matthews Paul M, Behrens Timothy E J

机构信息

Oxford University Centre for Functional MRI of the Brain (FMRIB), Dept. Clinical Neurology, University of Oxford, UK.

出版信息

Neuroimage. 2006 Jul 15;31(4):1487-505. doi: 10.1016/j.neuroimage.2006.02.024. Epub 2006 Apr 19.

Abstract

There has been much recent interest in using magnetic resonance diffusion imaging to provide information about anatomical connectivity in the brain, by measuring the anisotropic diffusion of water in white matter tracts. One of the measures most commonly derived from diffusion data is fractional anisotropy (FA), which quantifies how strongly directional the local tract structure is. Many imaging studies are starting to use FA images in voxelwise statistical analyses, in order to localise brain changes related to development, degeneration and disease. However, optimal analysis is compromised by the use of standard registration algorithms; there has not to date been a satisfactory solution to the question of how to align FA images from multiple subjects in a way that allows for valid conclusions to be drawn from the subsequent voxelwise analysis. Furthermore, the arbitrariness of the choice of spatial smoothing extent has not yet been resolved. In this paper, we present a new method that aims to solve these issues via (a) carefully tuned non-linear registration, followed by (b) projection onto an alignment-invariant tract representation (the "mean FA skeleton"). We refer to this new approach as Tract-Based Spatial Statistics (TBSS). TBSS aims to improve the sensitivity, objectivity and interpretability of analysis of multi-subject diffusion imaging studies. We describe TBSS in detail and present example TBSS results from several diffusion imaging studies.

摘要

最近,人们对利用磁共振扩散成像来提供有关大脑解剖连接性的信息产生了浓厚兴趣,这是通过测量白质束中水分子的各向异性扩散来实现的。从扩散数据中最常得出的指标之一是分数各向异性(FA),它量化了局部束状结构的方向强度。许多成像研究开始在体素统计分析中使用FA图像,以便定位与发育、退化和疾病相关的大脑变化。然而,标准配准算法的使用影响了最佳分析效果;到目前为止,对于如何以一种能从后续体素分析中得出有效结论的方式对齐多个受试者的FA图像这一问题,还没有令人满意的解决方案。此外,空间平滑程度选择的随意性问题也尚未得到解决。在本文中,我们提出了一种新方法,旨在通过(a)精心调整的非线性配准,然后(b)投影到对齐不变的束状表示(“平均FA骨架”)上来解决这些问题。我们将这种新方法称为基于束的空间统计学(TBSS)。TBSS旨在提高多受试者扩散成像研究分析的敏感性、客观性和可解释性。我们详细描述了TBSS,并展示了来自几项扩散成像研究的TBSS示例结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验