d'Auvergne Edward J, Gooley Paul R
Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Goettingen, D-37077, Germany.
J Biomol NMR. 2008 Feb;40(2):121-33. doi: 10.1007/s10858-007-9213-3. Epub 2007 Dec 18.
Finding the dynamics of an entire macromolecule is a complex problem as the model-free parameter values are intricately linked to the Brownian rotational diffusion of the molecule, mathematically through the autocorrelation function of the motion and statistically through model selection. The solution to this problem was formulated using set theory as an element of the universal set [formula: see text]-the union of all model-free spaces (d'Auvergne EJ and Gooley PR (2007) Mol BioSyst 3(7), 483-494). The current procedure commonly used to find the universal solution is to initially estimate the diffusion tensor parameters, to optimise the model-free parameters of numerous models, and then to choose the best model via model selection. The global model is then optimised and the procedure repeated until convergence. In this paper a new methodology is presented which takes a different approach to this diffusion seeded model-free paradigm. Rather than starting with the diffusion tensor this iterative protocol begins by optimising the model-free parameters in the absence of any global model parameters, selecting between all the model-free models, and finally optimising the diffusion tensor. The new model-free optimisation protocol will be validated using synthetic data from Schurr JM et al. (1994) J Magn Reson B 105(3), 211-224 and the relaxation data of the bacteriorhodopsin (1-36)BR fragment from Orekhov VY (1999) J Biomol NMR 14(4), 345-356. To demonstrate the importance of this new procedure the NMR relaxation data of the Olfactory Marker Protein (OMP) of Gitti R et al. (2005) Biochem 44(28), 9673-9679 is reanalysed. The result is that the dynamics for certain secondary structural elements is very different from those originally reported.
确定整个大分子的动力学是一个复杂的问题,因为无模型参数值与分子的布朗旋转扩散紧密相关,在数学上通过运动的自相关函数,在统计上通过模型选择。这个问题的解决方案是用集合论来表述的,作为全集[公式:见原文]的一个元素——所有无模型空间的并集(d'Auvergne EJ和Gooley PR(2007年),《分子生物系统》3(7),483 - 494)。目前用于找到通用解的常用方法是首先估计扩散张量参数,优化众多模型的无模型参数,然后通过模型选择选择最佳模型。然后对全局模型进行优化,并重复该过程直到收敛。在本文中,提出了一种新方法,该方法对这种基于扩散的无模型范式采用了不同的方法。这个迭代协议不是从扩散张量开始,而是在没有任何全局模型参数的情况下首先优化无模型参数,在所有无模型模型之间进行选择,最后优化扩散张量。新的无模型优化协议将使用Schurr JM等人(1994年)《磁共振杂志B》105(3)期,211 - 224的合成数据以及来自Orekhov VY(1999年)《生物分子核磁共振杂志》14(4)期,345 - 356的细菌视紫红质(BR)片段(1 - 36)的弛豫数据进行验证。为了证明这个新方法的重要性,对Gitti R等人(2005年)《生物化学》44(28)期,9673 - 9679的嗅觉标记蛋白(OMP)的核磁共振弛豫数据进行了重新分析。结果是某些二级结构元件的动力学与最初报道的有很大不同。