Šede Megija, Fridmanis Jēkabs, Otikovs Martins, Johansson Jan, Rising Anna, Kronqvist Nina, Jaudzems Kristaps
Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Riga, Latvia.
Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Huddinge, Sweden.
Front Mol Biosci. 2022 Jun 14;9:936887. doi: 10.3389/fmolb.2022.936887. eCollection 2022.
The spidroin N-terminal domain (NT) is responsible for high solubility and pH-dependent assembly of spider silk proteins during storage and fiber formation, respectively. It forms a monomeric five-helix bundle at neutral pH and dimerizes at lowered pH, thereby firmly interconnecting the spidroins. Mechanistic studies with the NTs from major ampullate, minor ampullate, and flagelliform spidroins (MaSp, MiSp, and FlSp) have shown that the pH dependency is conserved between different silk types, although the residues that mediate this process can differ. Here we study the tubuliform spidroin (TuSp) NT from , which lacks several well conserved residues involved in the dimerization of other NTs. We solve its structure at low pH revealing an antiparallel dimer of two five-α-helix bundles, which contrasts with a previously determined TuSp NT monomer structure. Further, we study a set of mutants and find that the residues participating in the protonation events during dimerization are different from MaSp and MiSp NT. Charge reversal of one of these residues (R117 in TuSp) results in significantly altered electrostatic interactions between monomer subunits. Altogether, the structure and mutant studies suggest that TuSp NT monomers assemble by elimination of intramolecular repulsive charge interactions, which could lead to slight tilting of α-helices.
蜘蛛丝蛋白的N端结构域(NT)分别负责蜘蛛丝蛋白在储存和纤维形成过程中的高溶解性以及pH依赖性组装。它在中性pH下形成单体五螺旋束,在pH降低时二聚化,从而牢固地连接蜘蛛丝蛋白。对大壶状腺、小壶状腺和鞭毛状蜘蛛丝蛋白(MaSp、MiSp和FlSp)的NT进行的机理研究表明,尽管介导这一过程的残基可能不同,但不同丝类型之间的pH依赖性是保守的。在这里,我们研究了来自[具体来源未提及]的管状蜘蛛丝蛋白(TuSp)的NT,它缺少其他NT二聚化过程中涉及的几个保守残基。我们在低pH下解析了它的结构,揭示了两个五α螺旋束的反平行二聚体,这与先前确定的TuSp NT单体结构形成对比。此外,我们研究了一组突变体,发现二聚化过程中参与质子化事件的残基与MaSp和MiSp NT不同。其中一个残基(TuSp中的R117)的电荷反转导致单体亚基之间的静电相互作用发生显著改变。总之,结构和突变体研究表明,TuSp NT单体通过消除分子内排斥电荷相互作用进行组装,这可能导致α螺旋轻微倾斜。