Suppr超能文献

Gα12/Gα13缺乏会导致发育中的大脑和小脑皮质神经元局部过度迁移。

Galpha12/Galpha13 deficiency causes localized overmigration of neurons in the developing cerebral and cerebellar cortices.

作者信息

Moers Alexandra, Nürnberg Alexander, Goebbels Sandra, Wettschureck Nina, Offermanns Stefan

机构信息

Institute of Pharmacology, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.

出版信息

Mol Cell Biol. 2008 Mar;28(5):1480-8. doi: 10.1128/MCB.00651-07. Epub 2007 Dec 17.

Abstract

The heterotrimeric G proteins G(12) and G(13) link G-protein-coupled receptors to the regulation of the actin cytoskeleton and the induction of actomyosin-based cellular contractility. Here we show that conditional ablation of the genes encoding the alpha-subunits of G(12) and G(13) in the nervous system results in neuronal ectopia of the cerebral and cerebellar cortices due to overmigration of cortical plate neurons and cerebellar Purkinje cells, respectively. The organization of the radial glia and the basal lamina was not disturbed, and the Cajal-Retzius cell layer had formed normally in mutant mice. Embryonic cortical neurons lacking G(12)/G(13) were unable to retract their neurites in response to lysophosphatidic acid and sphingosine-1-phosphate, indicating that they had lost the ability to respond to repulsive mediators acting via G-protein-coupled receptors. Our data indicate that G(12)/G(13)-coupled receptors mediate stop signals and are required for the proper positioning of migrating cortical plate neurons and Purkinje cells during development.

摘要

异源三聚体G蛋白G(12)和G(13)将G蛋白偶联受体与肌动蛋白细胞骨架的调节以及基于肌动球蛋白的细胞收缩性的诱导联系起来。在此我们表明,在神经系统中条件性敲除编码G(12)和G(13)α亚基的基因,分别由于皮质板神经元和小脑浦肯野细胞的过度迁移,导致大脑和小脑皮质的神经元异位。放射状胶质细胞和基膜的组织未受干扰,并且在突变小鼠中Cajal-Retzius细胞层正常形成。缺乏G(12)/G(13)的胚胎皮质神经元无法响应溶血磷脂酸和1-磷酸鞘氨醇而缩回其神经突,表明它们失去了对通过G蛋白偶联受体起作用的排斥介质作出反应的能力。我们的数据表明,G(12)/G(13)偶联受体介导停止信号,并且是发育过程中迁移的皮质板神经元和浦肯野细胞正确定位所必需的。

相似文献

1
Galpha12/Galpha13 deficiency causes localized overmigration of neurons in the developing cerebral and cerebellar cortices.
Mol Cell Biol. 2008 Mar;28(5):1480-8. doi: 10.1128/MCB.00651-07. Epub 2007 Dec 17.
3
Receptor-dependent RhoA activation in G12/G13-deficient cells: genetic evidence for an involvement of Gq/G11.
J Biol Chem. 2003 Aug 1;278(31):28743-9. doi: 10.1074/jbc.M304570200. Epub 2003 May 27.
4
Regulation of neurite morphogenesis by interaction between R7 regulator of G protein signaling complexes and G protein subunit Gα.
J Biol Chem. 2017 Jun 16;292(24):9906-9918. doi: 10.1074/jbc.M116.771923. Epub 2017 Apr 21.
5
G protein-coupled receptor 56 and collagen III, a receptor-ligand pair, regulates cortical development and lamination.
Proc Natl Acad Sci U S A. 2011 Aug 2;108(31):12925-30. doi: 10.1073/pnas.1104821108. Epub 2011 Jul 18.
6
Chronic restraint stress induces changes in the cerebral Galpha 12/13 and Rho-GTPase signaling network.
Pharmacol Rep. 2021 Aug;73(4):1179-1187. doi: 10.1007/s43440-021-00294-4. Epub 2021 Jun 11.
7
Developmental expression of heterotrimeric G-proteins in the murine cerebellar cortex.
Histochem Cell Biol. 2001 Aug;116(2):149-59. doi: 10.1007/s004180100303.
8
The interaction of Gα13 with integrin β1 mediates cell migration by dynamic regulation of RhoA.
Mol Biol Cell. 2015 Oct 15;26(20):3658-70. doi: 10.1091/mbc.E15-05-0274. Epub 2015 Aug 26.
9
G-Protein Gα Functions with Abl Kinase to Regulate Actin Cytoskeletal Reorganization.
J Mol Biol. 2017 Dec 8;429(24):3836-3849. doi: 10.1016/j.jmb.2017.10.020. Epub 2017 Oct 25.
10
Receptor selectivity between the G proteins Gα and Gα is defined by a single leucine-to-isoleucine variation.
FASEB J. 2019 Apr;33(4):5005-5017. doi: 10.1096/fj.201801956R. Epub 2019 Jan 2.

引用本文的文献

1
G proteins of the G family expressed by POMC neurons regulate key metabolic functions.
Sci Adv. 2025 Jul 11;11(28):eadu1670. doi: 10.1126/sciadv.adu1670.
2
Synaptic Gα12/13 signaling establishes hippocampal PV inhibitory circuits.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2407828121. doi: 10.1073/pnas.2407828121. Epub 2024 Dec 18.
4
GPCR-Gα13 Involvement in Mitochondrial Function, Oxidative Stress, and Prostate Cancer.
Int J Mol Sci. 2024 Jun 28;25(13):7162. doi: 10.3390/ijms25137162.
5
Deficiency Induces Abnormal Cerebellar Function and Behavioral Deficits of Adult Mice through Modulating RhoA/ROCK Signaling.
J Neurosci. 2023 Jun 21;43(25):4559-4579. doi: 10.1523/JNEUROSCI.1962-22.2023. Epub 2023 May 24.
6
Gα13 Contributes to LPS-Induced Morphological Alterations and Affects Migration of Microglia.
Mol Neurobiol. 2021 Dec;58(12):6397-6414. doi: 10.1007/s12035-021-02553-0. Epub 2021 Sep 16.
7
Chronic restraint stress induces changes in the cerebral Galpha 12/13 and Rho-GTPase signaling network.
Pharmacol Rep. 2021 Aug;73(4):1179-1187. doi: 10.1007/s43440-021-00294-4. Epub 2021 Jun 11.
8
Mechanisms of adhesion G protein-coupled receptor activation.
J Biol Chem. 2020 Oct 9;295(41):14065-14083. doi: 10.1074/jbc.REV120.007423. Epub 2020 Aug 6.
9
Regulation of Neurogenesis by FGF Signaling and Neurogenin in the Invertebrate Chordate .
Front Cell Dev Biol. 2020 Jun 23;8:477. doi: 10.3389/fcell.2020.00477. eCollection 2020.

本文引用的文献

1
Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice.
Genesis. 2006 Dec;44(12):611-21. doi: 10.1002/dvg.20256.
2
Meninges control tangential migration of hem-derived Cajal-Retzius cells via CXCL12/CXCR4 signaling.
Nat Neurosci. 2006 Oct;9(10):1284-93. doi: 10.1038/nn1764. Epub 2006 Sep 10.
3
Serum response factor controls neuronal circuit assembly in the hippocampus.
Nat Neurosci. 2006 Feb;9(2):195-204. doi: 10.1038/nn1627. Epub 2006 Jan 15.
4
Essential roles for the FE65 amyloid precursor protein-interacting proteins in brain development.
EMBO J. 2006 Jan 25;25(2):420-31. doi: 10.1038/sj.emboj.7600926. Epub 2006 Jan 12.
6
The cells of cajal-retzius: still a mystery one century after.
Neuron. 2005 May 5;46(3):389-94. doi: 10.1016/j.neuron.2005.04.019.
7
The role of the Rho GTPases in neuronal development.
Genes Dev. 2005 Jan 1;19(1):1-49. doi: 10.1101/gad.1256405.
8
Role of presenilin-1 in cortical lamination and survival of Cajal-Retzius neurons.
Dev Biol. 2005 Jan 15;277(2):332-46. doi: 10.1016/j.ydbio.2004.09.024.
9
Cortical neuronal migration mutants suggest separate but intersecting pathways.
Annu Rev Cell Dev Biol. 2004;20:593-618. doi: 10.1146/annurev.cellbio.20.082503.103047.
10
Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members.
EMBO J. 2004 Oct 13;23(20):4106-15. doi: 10.1038/sj.emboj.7600390. Epub 2004 Sep 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验