Suppr超能文献

对胰岛素样生长因子-II(IGF-II)信号传导的敏感性增强,将IGF2印记缺失与细胞增殖增加和肿瘤风险联系起来。

Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk.

作者信息

Kaneda Atsushi, Wang Chiaochun J, Cheong Raymond, Timp Winston, Onyango Patrick, Wen Bo, Iacobuzio-Donahue Christine A, Ohlsson Rolf, Andraos Rita, Pearson Mark A, Sharov Alexei A, Longo Dan L, Ko Minoru S H, Levchenko Andre, Feinberg Andrew P

机构信息

Center for Epigenetics and Department of Medicine, Johns Hopkins University School of Medicine, 1064 Ross, 720 Rutland Avenue, Baltimore, MD 21205, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20926-31. doi: 10.1073/pnas.0710359105. Epub 2007 Dec 17.

Abstract

Loss of imprinting (LOI) of the insulin-like growth factor-II gene (IGF2), leading to abnormal activation of the normally silent maternal allele, is a common human epigenetic population variant associated with a 5-fold increased frequency of colorectal neoplasia. Here, we show first that LOI leads specifically to increased expression of proliferation-related genes in mouse intestinal crypts. Surprisingly, LOI(+) mice also have enhanced sensitivity to IGF-II signaling, not simply increased IGF-II levels, because in vivo blockade with NVP-AEW541, a specific inhibitor of the IGF-II signaling receptor, showed reduction of proliferation-related gene expression to levels half that seen in LOI(-) mice. Signal transduction assays in microfluidic chips confirmed this enhanced sensitivity with marked augmentation of Akt/PKB signaling in LOI(+) cells at low doses of IGF-II, which was reduced in the presence of the inhibitor to levels below those found in LOI(-) cells, and was associated with increased expression of the IGF1 and insulin receptor genes. We exploited this increased IGF-II sensitivity to develop an in vivo chemopreventive strategy using the azoxymethane (AOM) mutagenesis model. LOI(+) mice treated with AOM showed a 60% increase in premalignant aberrant crypt foci (ACF) formation over LOI(-) mice. In vivo IGF-II blockade with NVP-AEW541 abrogated this effect, reducing ACF to a level 30% lower even than found in exposed LOI(-) mice. Thus, LOI increases cancer risk in a counterintuitive way, by increasing the sensitivity of the IGF-II signaling pathway itself, providing a previously undescribed epigenetic chemoprevention strategy in which cells with LOI are "IGF-II addicted" and undergo reduced tumorigenesis in the colon upon IGF-II pathway blockade.

摘要

胰岛素样生长因子-II基因(IGF2)印记缺失(LOI)会导致通常沉默的母本等位基因异常激活,这是一种常见的人类表观遗传群体变异,与结直肠肿瘤发生频率增加5倍相关。在此,我们首先表明,LOI会特异性导致小鼠肠道隐窝中增殖相关基因的表达增加。令人惊讶的是,LOI(+)小鼠对IGF-II信号也具有增强的敏感性,而不仅仅是IGF-II水平升高,因为用IGF-II信号受体的特异性抑制剂NVP-AEW541进行体内阻断后,增殖相关基因的表达降低至LOI(-)小鼠的一半。微流控芯片中的信号转导分析证实了这种增强的敏感性,在低剂量IGF-II时,LOI(+)细胞中Akt/PKB信号显著增强,在抑制剂存在的情况下,该信号降低至低于LOI(-)细胞中的水平,并与IGF1和胰岛素受体基因的表达增加相关。我们利用这种对IGF-II敏感性的增加,使用偶氮甲烷(AOM)诱变模型开发了一种体内化学预防策略。与LOI(-)小鼠相比,用AOM处理的LOI(+)小鼠癌前异常隐窝灶(ACF)形成增加了60%。用NVP-AEW541进行体内IGF-II阻断消除了这种效应,将ACF降低至甚至比暴露的LOI(-)小鼠低30%的水平。因此,LOI以一种违反直觉的方式增加癌症风险,即增加IGF-II信号通路本身的敏感性,提供了一种先前未描述的表观遗传化学预防策略,其中具有LOI的细胞“对IGF-II成瘾”,并且在IGF-II通路阻断后结肠肿瘤发生减少。

相似文献

1
Enhanced sensitivity to IGF-II signaling links loss of imprinting of IGF2 to increased cell proliferation and tumor risk.
Proc Natl Acad Sci U S A. 2007 Dec 26;104(52):20926-31. doi: 10.1073/pnas.0710359105. Epub 2007 Dec 17.
2
Loss of Gene Imprinting in Murine Prostate Promotes Widespread Neoplastic Growth.
Cancer Res. 2017 Oct 1;77(19):5236-5247. doi: 10.1158/0008-5472.CAN-16-3089. Epub 2017 Aug 3.
4
Promoter histone H3K27 methylation in the control of IGF2 imprinting in human tumor cell lines.
Hum Mol Genet. 2014 Jan 1;23(1):117-28. doi: 10.1093/hmg/ddt405. Epub 2013 Aug 19.
5
Temporal stability and age-related prevalence of loss of imprinting of the insulin-like growth factor-2 gene.
Epigenetics. 2009 Feb 16;4(2):114-8. doi: 10.4161/epi.4.2.7954. Epub 2009 Feb 27.
6
Epigenetic specificity of loss of imprinting of the IGF2 gene in Wilms tumors.
J Natl Cancer Inst. 2007 Aug 15;99(16):1270-3. doi: 10.1093/jnci/djm069. Epub 2007 Aug 8.
7
A new link between epigenetic progenitor lesions in cancer and the dynamics of signal transduction.
Cell Cycle. 2009 Feb 1;8(3):383-90. doi: 10.4161/cc.8.3.7542. Epub 2009 Feb 3.
8
IGF2 Is Up-regulated by Epigenetic Mechanisms in Hepatocellular Carcinomas and Is an Actionable Oncogene Product in Experimental Models.
Gastroenterology. 2016 Dec;151(6):1192-1205. doi: 10.1053/j.gastro.2016.09.001. Epub 2016 Sep 7.

引用本文的文献

1
The role of IGF/IGF-1R signaling in the regulation of cancer stem cells.
Clin Transl Oncol. 2024 Dec;26(12):2924-2934. doi: 10.1007/s12094-024-03561-x. Epub 2024 Jun 12.
2
The oncogenic function of PLAGL2 is mediated via ASCL2 and IGF2 and a Wnt-independent mechanism in colorectal cancer.
Am J Physiol Gastrointest Liver Physiol. 2023 Aug 1;325(2):G196-G211. doi: 10.1152/ajpgi.00058.2022. Epub 2023 Jun 13.
3
Insulin-like growth factor-2 is a promising candidate for the treatment and prevention of Alzheimer's disease.
CNS Neurosci Ther. 2023 Jun;29(6):1449-1469. doi: 10.1111/cns.14160. Epub 2023 Mar 27.
4
Cell cycle control by the insulin-like growth factor signal: at the crossroad between cell growth and mitotic regulation.
Cell Cycle. 2023 Jan;22(1):1-37. doi: 10.1080/15384101.2022.2108117. Epub 2022 Aug 25.
6
Integrative genome-wide analyses reveal the transcriptional aberrations in Japanese esophageal squamous cell carcinoma.
Cancer Sci. 2021 Oct;112(10):4377-4392. doi: 10.1111/cas.15063. Epub 2021 Aug 12.
7
Diversity of insulin and IGF signaling in breast cancer: Implications for therapy.
Mol Cell Endocrinol. 2021 May 1;527:111213. doi: 10.1016/j.mce.2021.111213. Epub 2021 Feb 17.
8
The IGF-II-Insulin Receptor Isoform-A Autocrine Signal in Cancer: .
Cancers (Basel). 2020 Feb 5;12(2):366. doi: 10.3390/cancers12020366.
9
A Loss of Epigenetic Control Can Promote Cell Death through Reversing the Balance of Pathways in a Signaling Network.
Mol Cell. 2018 Oct 4;72(1):60-70.e3. doi: 10.1016/j.molcel.2018.08.025. Epub 2018 Sep 20.
10
Associations of and polymorphisms with laying traits in Muscovy duck.
PeerJ. 2017 Nov 23;5:e4083. doi: 10.7717/peerj.4083. eCollection 2017.

本文引用的文献

1
Akt/PKB interacts with the histone H3 methyltransferase SETDB1 and coordinates to silence gene expression.
Mol Cell Biochem. 2007 Nov;305(1-2):35-44. doi: 10.1007/s11010-007-9525-3. Epub 2007 Jun 19.
2
Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors.
J Biol Chem. 2006 Aug 11;281(32):22429-33. doi: 10.1074/jbc.R600015200. Epub 2006 Jun 22.
3
CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1.
Science. 2006 Apr 14;312(5771):269-72. doi: 10.1126/science.1123191.
4
The H19 gene: regulation and function of a non-coding RNA.
Cytogenet Genome Res. 2006;113(1-4):188-93. doi: 10.1159/000090831.
5
CARMA1 is required for Akt-mediated NF-kappaB activation in T cells.
Mol Cell Biol. 2006 Mar;26(6):2327-36. doi: 10.1128/MCB.26.6.2327-2336.2006.
6
The epigenetic progenitor origin of human cancer.
Nat Rev Genet. 2006 Jan;7(1):21-33. doi: 10.1038/nrg1748.
7
Loss of imprinting of IGF2: a common epigenetic modifier of intestinal tumor risk.
Cancer Res. 2005 Dec 15;65(24):11236-40. doi: 10.1158/0008-5472.CAN-05-2959.
8
The rac activator Tiam1 is a Wnt-responsive gene that modifies intestinal tumor development.
J Biol Chem. 2006 Jan 6;281(1):543-8. doi: 10.1074/jbc.M507582200. Epub 2005 Oct 25.
9
Serrated polyps of the large intestine: a morphologic and molecular review of an evolving concept.
Am J Clin Pathol. 2005 Sep;124(3):380-91. doi: 10.1309/V2EP-TPLJ-RB3F-GHJL.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验