Hanna Michael C, Calkins David J
The National Institute of Neurological Disorders and Stroke, National Institutes of Health, Cellular Neurology Unit, Bethesda, MD, USA.
Mol Vis. 2007 Nov 28;13:2194-208.
Light signals from rod and cone photoreceptors traverse distinct types of second-order, bipolar neurons that carry these signals from the outer to inner retina. Anatomic and physiologic studies suggest that the specialization of rod and cone bipolar cells involves the differential expression of proteins involved in glutamatergic signaling. In a previous study, we compared the expression of genes for the AMPA- (GluR1-4) and kainate-sensitive (GluR5-7, KA1-2) ionotropic glutamate receptors, the metabotropic glutamate receptors (mGluR1-8), and five non-vesicular glutamate transporters (EAAT1-5) in full-complement cDNA constructed from fresh and aldehyde-fixed macaque retina using a technique suitable for amplification of a variety of differentially expressed transcripts. Here we apply the same protocol to compare expression of these genes in cDNA constructed from single rod and cone bipolar cells previously-labeled for morphological identification in fixed slices of macaque retina.
We used immunocytochemical labeling and unique morphological features in lightly fixed slices of macaque retina to target the rod bipolar or the DB3 cone OFF bipolar cell. Under visual control, we used a micropipette to target and extract labeled cells, and we isolated mRNA from each through enzymatic digestion. Full-length cDNA was synthesized using 3'-end amplification (TPEA) PCR, in which the highly diverse 3' regions were amplified indiscriminately to ensure detection of both high and low abundance genes. We used gene-specific RT-PCR to probe the cDNA of each bipolar cell both for expression of known genes to confirm cell identification as well as expression of genes encoding glutamate receptors GluR1-7, KA1-2, and mGluR1-8 and for transporters EAAT1-5.
Of 27 rod bipolar cells confirmed to express the genes for the a subunit of protein kinase C, mGluR6, and its G protein Galpha(o), 26 expressed at least one AMPA GluR subunit gene, 16 expressed at least two, and nine expressed three or more. Nearly every cell expressed the GluR4 gene (23/27), followed by GluR2 (16/27) and GluR1 (11/27). In addition to mGluR6, 20/27 cells also expressed the mGluR3 gene. Nearly every rod bipolar cell also expressed the genes for the EAAT2 (23/27) and EAAT4 (21/27) transporters. Of 26 DB3 cells confirmed by expression of calbindin D-28 and absence of GAD-65/67, each expressed the gene for the AMPA subunit GluR4, followed by GluR2 (22/26), and GluR1 (15/26), the only kainate subunit gene expressed was GluR6 (18/26). Nearly every DB3 cell also expressed the gene for the EAAT2 transporter (25/26), but no others.
Rod bipolar cells in the Macaca monkey retina expressed not only the mGluR6 gene, a subunit necessary for transmission of light-ON signals, but also nearly always GluR4 in combination with the glutamate transporter EAAT4 (21/27 cells). The DB3 cell involved in processing light-OFF signals from cones expressed most highly the combination of GluR4 and the transporter EAAT2 (25/26). These results suggest that glutamatergic signaling in rod and cone circuits in the primate retina depends upon complex molecular interactions, involving not only multiple glutamate receptor subunits, but also glutamate transporters. Our data demonstrate a consistent primary pattern for each cell type with subtle variability involving other genes. Thus, like neuronal cell types in other brain regions, morphological and physiologic homogeneity among retinal bipolar cell types does not exclude variations in expression that could serve to adjust the stimulus-response profile of each cell.
来自视杆和视锥光感受器的光信号穿过不同类型的二级双极神经元,这些神经元将这些信号从视网膜外层传递到内层。解剖学和生理学研究表明,视杆和视锥双极细胞的特化涉及谷氨酸能信号传导相关蛋白质的差异表达。在先前的一项研究中,我们使用一种适用于扩增多种差异表达转录本的技术,比较了从新鲜和醛固定的猕猴视网膜构建的全互补cDNA中,AMPA-(GluR1-4)和对海人酸敏感(GluR5-7,KA1-2)的离子型谷氨酸受体、代谢型谷氨酸受体(mGluR1-8)以及五种非囊泡性谷氨酸转运体(EAAT1-5)的基因表达。在此,我们应用相同的方案,比较这些基因在从猕猴视网膜固定切片中先前经形态学鉴定标记的单个视杆和视锥双极细胞构建的cDNA中的表达。
我们利用猕猴视网膜轻度固定切片中的免疫细胞化学标记和独特形态特征,靶向视杆双极细胞或DB3视锥OFF双极细胞。在视觉控制下,我们使用微量移液器靶向并提取标记细胞,并通过酶消化从每个细胞中分离mRNA。使用3'-末端扩增(TPEA)PCR合成全长cDNA,其中高度多样化的3'区域被无差别扩增,以确保检测到高丰度和低丰度基因。我们使用基因特异性RT-PCR探测每个双极细胞的cDNA,以检测已知基因的表达以确认细胞鉴定,以及编码谷氨酸受体GluR1-7、KA1-2和mGluR1-8以及转运体EAAT1-5的基因的表达。
在27个被确认表达蛋白激酶C的α亚基、mGluR6及其G蛋白Gα(o)基因的视杆双极细胞中,26个表达了至少一个AMPA GluR亚基基因,16个表达了至少两个,9个表达了三个或更多。几乎每个细胞都表达GluR4基因(23/27),其次是GluR2(16/27)和GluR1(11/27)。除了mGluR6,20/27个细胞还表达mGluR3基因。几乎每个视杆双极细胞也表达EAAT2(23/27)和EAAT4(21/27)转运体的基因。在26个通过表达钙结合蛋白D-28和缺乏GAD-65/67而被确认的DB3细胞中,每个细胞都表达AMPA亚基GluR4基因,其次是GluR2(22/26)和GluR1(15/26),唯一表达的海人酸亚基基因是GluR6(18/26)。几乎每个DB3细胞也表达EAAT2转运体的基因(25/26),但不表达其他基因。
猕猴视网膜中的视杆双极细胞不仅表达mGluR6基因,这是光开信号传递所必需的一个亚基,而且几乎总是同时表达GluR4以及谷氨酸转运体EAAT4(21/27个细胞)。参与处理来自视锥的光关信号的DB3细胞高度表达GluR4和转运体EAAT2的组合(25/26)。这些结果表明,灵长类视网膜中视杆和视锥回路中的谷氨酸能信号传导依赖于复杂的分子相互作用,不仅涉及多个谷氨酸受体亚基,还涉及谷氨酸转运体。我们的数据证明了每种细胞类型一致的主要模式,同时存在涉及其他基因的细微变异。因此,与其他脑区的神经元细胞类型一样,视网膜双极细胞类型之间的形态和生理同质性并不排除表达上的差异,这些差异可能用于调整每个细胞的刺激反应谱。