Julien Olivier, Sun Yin-Biao, Wang Xu, Lindhout Darrin A, Thiessen Angela, Irving Malcolm, Sykes Brian D
Department of Biochemistry, University of Alberta, Edmonton, Canada.
Biochemistry. 2008 Jan 15;47(2):597-606. doi: 10.1021/bi702056g. Epub 2007 Dec 20.
In situ fluorescence/NMR spectroscopic approaches have been used to elucidate the structure, mobility, and domain orientations of troponin C in striated muscle. This led us to consider complementary approaches such as solid-state NMR spectroscopy. The biophysical properties of tryptophan and Trp-analogues, such as fluorotryptophan or hydroxytryptophan, are often exploited to probe protein structure and dynamics using solid-state NMR or fluorescence spectroscopy. We have characterized Phe-to-Trp mutants in the 'structural' C-domain of cardiac troponin C, designed to immobilize the indole ring in the hydrophobic core of the domain. The mutations and their fluorinated analogues (F104W, F104(5fW), F153W, and F153(5fW)) were shown not to perturb the structural properties of the protein. In this paper, we characterize the mutations F77W and F77W-V82A in the 'regulatory' N-domain of cardiac troponin C. We used NMR to determine the structure and dynamics of the mutant F77W-V82A-cNTnC, which shows a unique orientation of the indole ring. We observed a decrease in calcium binding affinity and a weaker affinity for the switch region of TnI for both mutants. We present force recovery measurements for all of the N- and C-domain mutants reconstituted into skeletal muscle fibers. The F77W mutation leads to a reduction of the in situ force recovery, whereas the C-domain mutants have the same activity as the wild type. These results suggest that the perturbations of the N-domain caused by the Trp mutation disturb the interaction between TnC and TnI, which in turn diminishes the activity in fibers, providing a clear example of the correlation between in vitro protein structures, their interactions, and the resulting in situ physiological activity.
原位荧光/核磁共振光谱方法已被用于阐明横纹肌中肌钙蛋白C的结构、流动性和结构域取向。这使我们考虑采用诸如固态核磁共振光谱等互补方法。色氨酸和色氨酸类似物(如氟色氨酸或羟基色氨酸)的生物物理特性常被用于通过固态核磁共振或荧光光谱来探测蛋白质的结构和动力学。我们已对心肌肌钙蛋白C“结构”C结构域中的苯丙氨酸到色氨酸突变体进行了表征,这些突变体旨在将吲哚环固定在该结构域的疏水核心中。结果表明,这些突变及其氟化类似物(F104W、F104(5fW)、F153W和F153(5fW))不会干扰蛋白质的结构特性。在本文中,我们对心肌肌钙蛋白C“调节”N结构域中的F77W和F77W-V82A突变进行了表征。我们利用核磁共振确定了突变体F77W-V82A-cNTnC的结构和动力学,该突变体显示出吲哚环的独特取向。我们观察到这两个突变体的钙结合亲和力均降低,且对肌钙蛋白I的开关区域的亲和力减弱。我们对所有重组到骨骼肌纤维中的N和C结构域突变体进行了力恢复测量。F77W突变导致原位力恢复降低,而C结构域突变体具有与野生型相同的活性。这些结果表明,色氨酸突变引起的N结构域扰动会干扰肌钙蛋白C和肌钙蛋白I之间的相互作用,进而降低纤维中的活性,这为体外蛋白质结构、它们的相互作用与由此产生的原位生理活性之间的相关性提供了一个清晰的例子。