Alahari Anuradha, Trivelli Xavier, Guérardel Yann, Dover Lynn G, Besra Gurdyal S, Sacchettini James C, Reynolds Robert C, Coxon Geoffrey D, Kremer Laurent
Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier II et I, Centre National de Recherche Scientifique (CNRS), UMR 5235, Montpellier, France.
PLoS One. 2007 Dec 19;2(12):e1343. doi: 10.1371/journal.pone.0001343.
Mycolic acids are a complex mixture of branched, long-chain fatty acids, representing key components of the highly hydrophobic mycobacterial cell wall. Pathogenic mycobacteria carry mycolic acid sub-types that contain cyclopropane rings. Double bonds at specific sites on mycolic acid precursors are modified by the action of cyclopropane mycolic acid synthases (CMASs). The latter belong to a family of S-adenosyl-methionine-dependent methyl transferases, of which several have been well studied in Mycobacterium tuberculosis, namely, MmaA1 through A4, PcaA and CmaA2. Cyclopropanated mycolic acids are key factors participating in cell envelope permeability, host immunomodulation and persistence of M. tuberculosis. While several antitubercular agents inhibit mycolic acid synthesis, to date, the CMASs have not been shown to be drug targets.
METHODOLOGY/PRINCIPLE FINDINGS: We have employed various complementary approaches to show that the antitubercular drug, thiacetazone (TAC), and its chemical analogues, inhibit mycolic acid cyclopropanation. Dramatic changes in the content and ratio of mycolic acids in the vaccine strain Mycobacterium bovis BCG, as well as in the related pathogenic species Mycobacterium marinum were observed after treatment with the drugs. Combination of thin layer chromatography, mass spectrometry and Nuclear Magnetic Resonance (NMR) analyses of mycolic acids purified from drug-treated mycobacteria showed a significant loss of cyclopropanation in both the alpha- and oxygenated mycolate sub-types. Additionally, High-Resolution Magic Angle Spinning (HR-MAS) NMR analyses on whole cells was used to detect cell wall-associated mycolates and to quantify the cyclopropanation status of the cell envelope. Further, overexpression of cmaA2, mmaA2 or pcaA in mycobacteria partially reversed the effects of TAC and its analogue on mycolic acid cyclopropanation, suggesting that the drugs act directly on CMASs.
CONCLUSIONS/SIGNIFICANCE: This is a first report on the mechanism of action of TAC, demonstrating the CMASs as its cellular targets in mycobacteria. The implications of this study may be important for the design of alternative strategies for tuberculosis treatment.
分枝菌酸是一种由支链长链脂肪酸组成的复杂混合物,是高度疏水的分枝杆菌细胞壁的关键成分。致病性分枝杆菌携带含有环丙烷环的分枝菌酸亚型。分枝菌酸前体上特定位置的双键通过环丙烷分枝菌酸合酶(CMASs)的作用进行修饰。后者属于S-腺苷甲硫氨酸依赖性甲基转移酶家族,其中几种在结核分枝杆菌中已得到充分研究,即MmaA1至A4、PcaA和CmaA2。环丙烷化分枝菌酸是参与结核分枝杆菌细胞包膜通透性、宿主免疫调节和持续性的关键因素。虽然几种抗结核药物抑制分枝菌酸合成,但迄今为止,CMASs尚未被证明是药物靶点。
方法/主要发现:我们采用了各种互补方法来表明抗结核药物硫代乙酰胺(TAC)及其化学类似物抑制分枝菌酸环丙烷化。在用药物处理后,观察到疫苗株牛分枝杆菌卡介苗(Mycobacterium bovis BCG)以及相关致病物种海分枝杆菌(Mycobacterium marinum)中分枝菌酸含量和比例的显著变化。对从药物处理的分枝杆菌中纯化的分枝菌酸进行薄层色谱、质谱和核磁共振(NMR)分析,结果表明α-和含氧分枝菌酸盐亚型中的环丙烷化均显著减少。此外,对全细胞进行的高分辨率魔角旋转(HR-MAS)NMR分析用于检测与细胞壁相关的分枝菌酸盐,并量化细胞包膜的环丙烷化状态。此外,分枝杆菌中cmaA2、mmaA2或pcaA的过表达部分逆转了TAC及其类似物对分枝菌酸环丙烷化的影响,表明这些药物直接作用于CMASs。
结论/意义:这是关于TAC作用机制的首次报告,证明CMASs是其在分枝杆菌中的细胞靶点。本研究的意义可能对结核病治疗替代策略的设计很重要。