Suppr超能文献

静脉推注后基于面积的初始分布容积和消除速率常数估计

Area-based estimation of the initial volume of distribution and elimination rate constant following intravenous bolus injection.

作者信息

Khor S P, Johnson S L, Mayersohn M

机构信息

Department of Pharmaceutical Sciences, College of Pharmacy, University of Arizona, Tucson 85721.

出版信息

J Pharm Sci. 1991 Nov;80(11):1042-50. doi: 10.1002/jps.2600801109.

Abstract

We evaluate here an area term, the area under the rate of change of concentration-time curve (AURC), which allows the determination of the initial or central volume of distribution (V1). It has previously been shown that AURC is equal to the sum of the coefficients of a multiexponential equation and, therefore, V1 = dose/AURC. It is also shown that the normalized moment, AURC/AUC, is equal to the elimination rate constant, K10, where AUC is the area under the concentration-time curve. This area-based method to estimate V1 and K10 has been evaluated with simulation of three model equations and compared with nonlinear regression analysis of the same data. Random errors of 10 and 15% were introduced into the concentration values. The AURC method provides values of both parameters that are similar to those obtained from nonlinear regression analysis and which are reasonably accurate estimates of the theoretically correct values. The potential limitations of this area method are discussed. Good correlations were also observed for values of V1 and K10 obtained by AURC and regression methods for data obtained from the literature for 13 different drugs.

摘要

我们在此评估一个面积项,即浓度 - 时间曲线变化率下的面积(AURC),它可用于确定初始或中心分布容积(V1)。此前已表明,AURC等于多指数方程的系数之和,因此,V1 = 剂量/AURC。还表明,归一化矩AURC/AUC等于消除速率常数K10,其中AUC是浓度 - 时间曲线下的面积。这种基于面积的估计V1和K10的方法已通过对三个模型方程的模拟进行评估,并与相同数据的非线性回归分析进行比较。向浓度值引入了10%和15%的随机误差。AURC方法提供的两个参数值与通过非线性回归分析获得的值相似,并且是理论正确值的合理准确估计。讨论了这种面积法的潜在局限性。对于通过AURC和回归方法从13种不同药物的文献数据中获得的V1和K10值,也观察到了良好的相关性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验