Colussi Timothy, Parsonage Derek, Boles William, Matsuoka Takeshi, Mallett T Conn, Karplus P Andrew, Claiborne Al
Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
Biochemistry. 2008 Jan 22;47(3):965-77. doi: 10.1021/bi701685u. Epub 2007 Dec 23.
The FAD-dependent alpha-glycerophosphate oxidase (GlpO) from Enterococcus casseliflavus and Streptococcus sp. was originally studied as a soluble flavoprotein oxidase; surprisingly, the GlpO sequence is 30-43% identical to those of the alpha-glycerophosphate dehydrogenases (GlpDs) from mitochondrial and bacterial sources. The structure of a deletion mutant of Streptococcus sp. GlpO (GlpODelta, lacking a 50-residue insert that includes a flexible surface region) has been determined using multiwavelength anomalous dispersion data and refined at 2.3 A resolution. Using the GlpODelta structure as a search model, we have also determined the intact GlpO structure, as refined at 2.4 A resolution. The first two domains of the GlpO fold are most closely related to those of the flavoprotein glycine oxidase, where they function in FAD binding and substrate binding, respectively; the GlpO C-terminal domain consists of two helix bundles and is not closely related to any known structure. The flexible surface region in intact GlpO corresponds to a segment of missing electron density that links the substrate-binding domain to a betabetaalpha element of the FAD-binding domain. In accordance with earlier biochemical studies (stabilizations of the covalent FAD-N5-sulfite adduct and p-quinonoid form of 8-mercapto-FAD), Ile430-N, Thr431-N, and Thr431-OG are hydrogen bonded to FAD-O2alpha in GlpODelta, stabilizing the negative charge in these two modified flavins and facilitating transfer of a hydride to FAD-N5 (from Glp) as well. Active-site overlays with the glycine oxidase-N-acetylglycine and d-amino acid oxidase-d-alanine complexes demonstrate that Arg346 of GlpODelta is structurally equivalent to Arg302 and Arg285, respectively; in both cases, these residues interact directly with the amino acid substrate or inhibitor carboxylate. The structural and functional divergence between GlpO and the bacterial and mitochondrial GlpDs is also discussed.
来自格氏肠球菌和链球菌属的黄素腺嘌呤二核苷酸(FAD)依赖性α-甘油磷酸氧化酶(GlpO)最初作为一种可溶性黄素蛋白氧化酶进行研究;令人惊讶的是,GlpO序列与线粒体和细菌来源的α-甘油磷酸脱氢酶(GlpDs)的序列有30%-43%的同一性。利用多波长反常色散数据确定了链球菌属GlpO缺失突变体(GlpODelta,缺少一个包含柔性表面区域的50个残基的插入片段)的结构,并在2.3埃分辨率下进行了精修。以GlpODelta结构作为搜索模型,我们还确定了完整的GlpO结构,并在2.4埃分辨率下进行了精修。GlpO折叠的前两个结构域与黄素蛋白甘氨酸氧化酶的结构域关系最为密切,它们分别在FAD结合和底物结合中发挥作用;GlpO的C末端结构域由两个螺旋束组成,与任何已知结构都没有密切关系。完整GlpO中的柔性表面区域对应于一段缺失的电子密度,该区域将底物结合结构域与FAD结合结构域的一个ββα元件相连。根据早期的生化研究(共价FAD-N5-亚硫酸盐加合物和8-巯基-FAD的对醌形式的稳定化),在GlpODelta中,Ile430-N、Thr431-N和Thr431-OG与FAD-O2α形成氢键,稳定了这两种修饰黄素中的负电荷,并促进了氢化物向FAD-N5(来自Glp)的转移。与甘氨酸氧化酶-N-乙酰甘氨酸和d-氨基酸氧化酶-d-丙氨酸复合物的活性位点重叠显示,GlpODelta的Arg346在结构上分别等同于Arg302和Arg285;在这两种情况下,这些残基都直接与氨基酸底物或抑制剂羧酸盐相互作用。还讨论了GlpO与细菌和线粒体GlpDs之间的结构和功能差异。