Fantoni Riccardo, Gazzillo Domenico, Giacometti Achille, Miller Mark A, Pastore Giorgio
Dipartimento di Chimica Fisica, Università di Venezia, S. Marta DD 2137, I-30123 Venezia, Italy.
J Chem Phys. 2007 Dec 21;127(23):234507. doi: 10.1063/1.2805066.
We consider a fluid of hard spheres bearing one or two uniform circular adhesive patches, distributed so as not to overlap. Two spheres interact via a "sticky" Baxter potential if the line joining the centers of the two spheres intersects a patch on each sphere, and via a hard sphere potential otherwise. We analyze the location of the fluid-fluid transition and of the percolation line as a function of the size of the patch (the fractional coverage of the sphere's surface) and of the number of patches within a virial expansion up to third order and within the first two terms (C0 and C1) of a class of closures Cn hinging on a density expansion of the direct correlation function. We find that the locations of the two lines depend sensitively on both the total adhesive coverage and its distribution. The treatment is almost fully analytical within the chosen approximate theory. We test our findings by means of specialized Monte Carlo simulations and find the main qualitative features of the critical behavior to be well captured in spite of the low density perturbative nature of the closure. The introduction of anisotropic attractions into a model suspension of spherical particles is a first step toward a more realistic description of globular proteins in solution.
我们考虑一种由硬球组成的流体,这些硬球带有一个或两个不重叠分布的均匀圆形粘性斑块。如果连接两个球体中心的直线与每个球体上的一个斑块相交,则两个球体通过“粘性”巴克斯特势相互作用,否则通过硬球势相互作用。我们在维里展开至三阶以及一类依赖于直接相关函数密度展开的封闭项(C_n)的前两项((C_0)和(C_1))的范围内,分析流体 - 流体转变位置和渗流线位置作为斑块大小(球体表面的分数覆盖率)和斑块数量的函数。我们发现这两条线的位置对总粘性覆盖率及其分布都非常敏感。在所选择的近似理论范围内,该处理几乎完全是解析的。我们通过专门的蒙特卡罗模拟来检验我们的发现,并且发现尽管封闭项具有低密度微扰性质,但临界行为的主要定性特征仍能被很好地捕捉。将各向异性吸引力引入球形颗粒的模型悬浮液中是朝着更真实地描述溶液中的球状蛋白质迈出的第一步。