Suppr超能文献

在放射治疗临床环境中,基于图谱的自动分割软件用于勾画脑危及器官的评估。

Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context.

作者信息

Isambert Aurélie, Dhermain Frédéric, Bidault François, Commowick Olivier, Bondiau Pierre-Yves, Malandain Grégoire, Lefkopoulos Dimitri

机构信息

Service de Physique, Institut Gustave Roussy, Villejuif, France.

出版信息

Radiother Oncol. 2008 Apr;87(1):93-9. doi: 10.1016/j.radonc.2007.11.030. Epub 2007 Dec 26.

Abstract

BACKGROUND AND PURPOSE

Conformal radiation therapy techniques require the delineation of volumes of interest, a time-consuming and operator-dependent task. In this work, we aimed to evaluate the potential interest of an atlas-based automatic segmentation software (ABAS) of brain organs at risk (OAR), when used under our clinical conditions.

MATERIALS AND METHODS

Automatic and manual segmentations of the eyes, optic nerves, optic chiasm, pituitary gland, brain stem and cerebellum of 11 patients on T1-weighted magnetic resonance, 3-mm thick slice images were compared using the Dice similarity coefficient (DSC). The sensitivity and specificity of the ABAS were also computed and analysed from a radiotherapy point of view by splitting the ROC (Receiver Operating Characteristic) space into four sub-regions.

RESULTS

Automatic segmentation of OAR was achieved in 7-8 min. Excellent agreement was obtained between automatic and manual delineations for organs exceeding 7 cm3: the DSC was greater than 0.8. For smaller structures, the DSC was lower than 0.41.

CONCLUSIONS

These tests demonstrated that this ABAS is a robust and reliable tool for automatic delineation of large structures under clinical conditions in our daily practice, even though the small structures must continue to be delineated manually by an expert.

摘要

背景与目的

适形放射治疗技术需要勾勒感兴趣的区域,这是一项耗时且依赖操作人员的任务。在本研究中,我们旨在评估基于图谱的脑危及器官(OAR)自动分割软件(ABAS)在我们临床条件下使用时的潜在价值。

材料与方法

使用骰子相似系数(DSC)比较了11例患者在T1加权磁共振成像上3毫米厚切片图像中眼睛、视神经、视交叉、垂体、脑干和小脑的自动分割与手动分割。还通过将ROC(受试者操作特征)空间划分为四个子区域,从放射治疗的角度计算并分析了ABAS的敏感性和特异性。

结果

OAR的自动分割在7 - 8分钟内完成。对于体积超过7立方厘米 的器官,自动分割与手动勾勒之间取得了极好的一致性:DSC大于0.8。对于较小的结构,DSC低于0.41。

结论

这些测试表明,在我们的日常临床条件下,该ABAS是自动勾勒大型结构的强大且可靠的工具,尽管小结构仍需由专家手动勾勒。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验