Suppr超能文献

基于图谱的磁共振图像自动分割:放射治疗中脑干的验证研究

Atlas-based automatic segmentation of MR images: validation study on the brainstem in radiotherapy context.

作者信息

Bondiau Pierre-Yves, Malandain Grégoire, Chanalet Stéphane, Marcy Pierre-Yves, Habrand Jean-Louis, Fauchon François, Paquis Philippe, Courdi Adel, Commowick Olivier, Rutten Isabelle, Ayache Nicholas

机构信息

Projet Epidaure, Institut National de Recherche en Informatique et Automatique, Sophia Antipolis, France.

出版信息

Int J Radiat Oncol Biol Phys. 2005 Jan 1;61(1):289-98. doi: 10.1016/j.ijrobp.2004.08.055.

Abstract

PURPOSE

Brain tumor radiotherapy requires the volume measurements and the localization of several individual brain structures. Any tool that can assist the physician to perform the delineation would then be of great help. Among segmentation methods, those that are atlas-based are appealing because they are able to segment several structures simultaneously, while preserving the anatomy topology. This study aims to evaluate such a method in a clinical context.

METHODS AND MATERIALS

The brain atlas is made of two three-dimensional (3D) volumes: the first is an artificial 3D magnetic resonance imaging (MRI); the second consists of the segmented structures in this artificial MRI. The elastic registration of the artificial 3D MRI against a patient 3D MRI dataset yields an elastic transformation that can be applied to the labeled image. The elastic transformation is obtained by minimizing the sum of the square differences of the image intensities and derived from the optical flow principle. This automatic delineation (AD) enables the mapping of the segmented structures onto the patient MRI. Parameters of the AD have been optimized on a set of 20 patients. Results are obtained on a series of 6 patients' MRI. A comprehensive validation of the AD has been conducted on performance of atlas-based segmentation in a clinical context with volume, position, sensitivity, and specificity that are compared by a panel of seven experimented physicians for the brain tumor treatments.

RESULTS

Expert interobserver volume variability ranged from 16.70 cm(3) to 41.26 cm(3). For patients, the ratio of minimal to maximal volume ranged from 48% to 70%. Median volume varied from 19.47 cm(3) to 27.66 cm(3) and volume of the brainstem calculated by AD varied from 17.75 cm(3) to 24.54 cm(3). Medians of experts ranged, respectively, for sensitivity and specificity, from 0.75 to 0.98 and from 0.85 to 0.99. Median of AD were, respectively, 0.77 and 0.97. Mean of experts ranged, respectively, from 0.78 to 0.97 and from 0.86 to 0.99. Mean of AD were, respectively, 0.76 and 0.97.

CONCLUSIONS

Results demonstrate that the method is repeatable, provides a good trade-off between accuracy and robustness, and leads to reproducible segmentation and labeling. These results can be improved by enriching the atlas with the rough information of tumor or by using different laws of deformation for the different structures. Qualitative results also suggest that this method can be used for automatic segmentation of other organs such as neck, thorax, abdomen, pelvis, and limbs.

摘要

目的

脑肿瘤放疗需要对多个个体脑结构进行体积测量和定位。因此,任何能够协助医生进行轮廓描绘的工具都将大有帮助。在分割方法中,基于图谱的方法很有吸引力,因为它们能够同时分割多个结构,同时保留解剖拓扑结构。本研究旨在在临床环境中评估这样一种方法。

方法和材料

脑图谱由两个三维(3D)体积组成:第一个是人工3D磁共振成像(MRI);第二个由该人工MRI中的分割结构组成。将人工3D MRI与患者3D MRI数据集进行弹性配准,得到一个可应用于标记图像的弹性变换。弹性变换是通过最小化图像强度的平方差之和并从光流原理推导得出的。这种自动描绘(AD)能够将分割结构映射到患者的MRI上。AD的参数已在一组20名患者上进行了优化。在一系列6名患者的MRI上获得了结果。在临床环境中,针对基于图谱的分割性能,通过一组七名经验丰富的医生对脑肿瘤治疗的体积、位置、敏感性和特异性进行比较,对AD进行了全面验证。

结果

专家间观察者的体积变异性范围为16.70 cm³至41.26 cm³。对于患者,最小体积与最大体积之比范围为48%至70%。中位数体积从19.47 cm³到27.66 cm³不等,AD计算的脑干体积从17.75 cm³到24.54 cm³不等。专家的敏感性和特异性中位数分别为0.75至0.98和0.85至0.99。AD的中位数分别为0.77和0.97。专家的平均值分别为0.78至0.97和0.86至0.99。AD的平均值分别为0.76和0.97。

结论

结果表明该方法具有可重复性,在准确性和稳健性之间取得了良好的平衡,并导致了可重复的分割和标记。通过用肿瘤的粗略信息丰富图谱或对不同结构使用不同的变形法则,可以改善这些结果。定性结果还表明,该方法可用于其他器官如颈部、胸部、腹部、骨盆和四肢的自动分割。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验