Katrusiak Andrzej
Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland.
Acta Crystallogr A. 2008 Jan;64(Pt 1):135-48. doi: 10.1107/S0108767307061181. Epub 2007 Dec 21.
Since the late 1950's, high-pressure structural studies have become increasingly frequent, following the inception of opposed-anvil cells, development of efficient diffractometric equipment (brighter radiation sources both in laboratories and in synchrotron facilities, highly efficient area detectors) and procedures (for crystal mounting, centring, pressure calibration, collecting and correcting data). Consequently, during the last decades, high-pressure crystallography has evolved into a powerful technique which can be routinely applied in laboratories and dedicated synchrotron and neutron facilities. The variation of pressure adds a new thermodynamic dimension to crystal-structure analyses, and extends the understanding of the solid state and materials in general. New areas of thermodynamic exploration of phase diagrams, polymorphism, transformations between different phases and cohesion forces, structure-property relations, and a deeper understanding of matter at the atomic scale in general are accessible with the high-pressure techniques in hand. A brief history, guidelines and requirements for performing high-pressure structural studies are outlined.
自20世纪50年代末以来,随着对顶砧室的出现、高效衍射测量设备(实验室和同步加速器设施中更亮的辐射源、高效面积探测器)以及程序(用于晶体安装、定心、压力校准、数据收集和校正)的发展,高压结构研究变得越来越频繁。因此,在过去几十年中,高压晶体学已发展成为一种强大的技术,可在实验室以及专门的同步加速器和中子设施中常规应用。压力的变化为晶体结构分析增添了一个新的热力学维度,并扩展了对固态和一般材料的理解。借助手头的高压技术,可以探索相图、多晶型性、不同相之间的转变和内聚力、结构 - 性能关系等热力学新领域,并更深入地了解原子尺度上的物质。本文概述了高压结构研究的简史、指南和要求。