Suppr超能文献

Site-directed mutagenesis of the conserved Ala348 and Gly350 residues at the putative active site of Bacillus kaustophilus leucine aminopeptidase.

作者信息

Chi Meng-Chun, Liu Jai-Shin, Wang Wen-Ching, Lin Long-Liu, Huang Hsien-Bin

机构信息

Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan.

出版信息

Biochimie. 2008 May;90(5):811-9. doi: 10.1016/j.biochi.2007.11.011. Epub 2007 Dec 7.

Abstract

Leucine aminopeptidase (LAP) is an exopeptidase that catalyzes the hydrolysis of amino acid residues from the amino terminus of proteins and peptides. Sequence alignment shows that the conserved Ala348 and Gly350 residues of Bacillus kaustophilus LAP (BkLAP) are located right next to a coordinated ligand. We further investigated the roles of these two residues by performing computer modeling and site-directed mutagenesis. Based on the modeling, the carbonyl group of Ala348 interacts with Asn345 and Asn435, and that of Gly350 with Ile353 and Leu354, where these interactions might maintain the zinc-coordinated residues at their correct positions. Replacement of Ala348 with Arg resulted in a dramatic reduction in LAP activity. A complete loss of the activity was also observed in A348E, A348V, and the Gly350 variants. Measurement of intrinsic tryptophan fluorescence revealed alteration of the microenvironment of aromatic amino acid residues, while circular dichroism spectra were nearly identical for wild-type and all mutant enzymes. Protein modeling and site-directed mutagenesis suggest that residues Ala348 and Gly350 are essential for BkLAP in maintaining a stable active-site environment for the catalytic reaction.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验