Harrell Nicholas B, Teachey Mary K, Gifford Nancy J, Henriksen Erik J
Muscle Metabolism Laboratory, Department of Physiology, University of Arizona College of Medicine, Tucson, AZ 85721, USA.
Arch Physiol Biochem. 2007 Oct-Dec;113(4-5):221-7. doi: 10.1080/13813450701783158.
Lithium increases glucose transport and glycogen synthesis in insulin-sensitive cell lines and rat skeletal muscle, and has been used as a non-selective inhibitor of glycogen synthase kinase-3 (GSK-3). However, the molecular mechanisms underlying lithium action on glucose transport in mammalian skeletal muscle are unknown. Therefore, we examined the effects of lithium on glucose transport activity, glycogen synthesis, insulin signaling elements (insulin receptor (IR), Akt, and GSK-3beta), and the stress-activated p38 mitogen-activated protein kinase (p38 MAPK) in the absence or presence of insulin in isolated soleus muscle from lean Zucker rats. Lithium (10 mM LiCl) enhanced basal glucose transport by 62% (p < 0.05) and augmented net glycogen synthesis by 112% (p < 0.05). Whereas lithium did not affect basal IR tyrosine phosphorylation or Akt ser(473) phosphorylation, it did enhance (41%, p < 0.05) basal GSK-3beta ser(9) phosphorylation. Lithium further enhanced (p < 0.05) the stimulatory effects of insulin on glucose transport (43%), glycogen synthesis (44%), and GSK-3beta ser(9) phosphorylation (13%). Lithium increased (p < 0.05) p38 MAPK phosphorylation both in the absence (37%) and presence (41%) of insulin. Importantly, selective inhibition of p38 MAPK (using 10 microM A304000) completely prevented the basal activation of glucose transport by lithium, and also significantly reduced (52%, p < 0.05) the lithium-induced enhancement of insulin-stimulated glucose transport. Theses results demonstrate that lithium enhances basal and insulin-stimulated glucose transport activity and glycogen synthesis in insulin-sensitive rat skeletal muscle, and that these effects are associated with a significant enhancement of GSK-3beta phosphorylation. Importantly, we have documented an essential role of p38 MAPK phosphorylation in the action lithium on the glucose transport system in isolated mammalian skeletal muscle.
锂可增加胰岛素敏感细胞系及大鼠骨骼肌中的葡萄糖转运和糖原合成,并且已被用作糖原合酶激酶-3(GSK-3)的非选择性抑制剂。然而,锂对哺乳动物骨骼肌葡萄糖转运作用的分子机制尚不清楚。因此,我们研究了在无胰岛素或有胰岛素存在的情况下,锂对来自瘦型 Zucker 大鼠的离体比目鱼肌中葡萄糖转运活性、糖原合成、胰岛素信号元件(胰岛素受体(IR)、Akt 和 GSK-3β)以及应激激活的 p38 丝裂原活化蛋白激酶(p38 MAPK)的影响。锂(10 mM LiCl)使基础葡萄糖转运增强了 62%(p < 0.05),净糖原合成增加了 112%(p < 0.05)。虽然锂不影响基础 IR 酪氨酸磷酸化或 Akt 丝氨酸(473)磷酸化,但它确实增强了(41%,p < 0.05)基础 GSK-3β 丝氨酸(9)磷酸化。锂进一步增强了(p < 0.05)胰岛素对葡萄糖转运(43%)、糖原合成(44%)和 GSK-3β 丝氨酸(9)磷酸化(13%)的刺激作用。锂在无胰岛素(37%)和有胰岛素(41%)存在的情况下均增加了(p < 0.05)p38 MAPK 磷酸化。重要的是,选择性抑制 p38 MAPK(使用 10 μM A304000)完全阻止了锂对基础葡萄糖转运的激活,并且还显著降低了(52%,p < 0.05)锂诱导的胰岛素刺激的葡萄糖转运增强。这些结果表明,锂增强了胰岛素敏感大鼠骨骼肌中的基础和胰岛素刺激的葡萄糖转运活性及糖原合成,并且这些作用与 GSK-3β 磷酸化的显著增强有关。重要的是,我们已经证明 p38 MAPK 磷酸化在锂对离体哺乳动物骨骼肌葡萄糖转运系统的作用中起重要作用。