Zhao Nan, Ferrer Jean-Luc, Ross Jeannine, Guan Ju, Yang Yue, Pichersky Eran, Noel Joseph P, Chen Feng
Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA.
Plant Physiol. 2008 Feb;146(2):455-67. doi: 10.1104/pp.107.110049. Epub 2007 Dec 27.
The plant SABATH protein family encompasses a group of related small-molecule methyltransferases (MTs) that catalyze the S-adenosyl-L-methionine-dependent methylation of natural chemicals encompassing widely divergent structures. Indole-3-acetic acid (IAA) methyltransferase (IAMT) is a member of the SABATH family that modulates IAA homeostasis in plant tissues through methylation of IAA's free carboxyl group. The crystal structure of Arabidopsis (Arabidopsis thaliana) IAMT (AtIAMT1) was determined and refined to 2.75 A resolution. The overall tertiary and quaternary structures closely resemble the two-domain bilobed monomer and the dimeric arrangement, respectively, previously observed for the related salicylic acid carboxyl methyltransferase from Clarkia breweri (CbSAMT). To further our understanding of the biological function and evolution of SABATHs, especially of IAMT, we analyzed the SABATH gene family in the rice (Oryza sativa) genome. Forty-one OsSABATH genes were identified. Expression analysis showed that more than one-half of the OsSABATH genes were transcribed in one or multiple organs. The OsSABATH gene most similar to AtIAMT1 is OsSABATH4. Escherichia coli-expressed OsSABATH4 protein displayed the highest level of catalytic activity toward IAA and was therefore named OsIAMT1. OsIAMT1 exhibited kinetic properties similar to AtIAMT1 and poplar IAMT (PtIAMT1). Structural modeling of OsIAMT1 and PtIAMT1 using the experimentally determined structure of AtIAMT1 reported here as a template revealed conserved structural features of IAMTs within the active-site cavity that are divergent from functionally distinct members of the SABATH family, such as CbSAMT. Phylogenetic analysis revealed that IAMTs from Arabidopsis, rice, and poplar (Populus spp.) form a monophyletic group. Thus, structural, biochemical, and phylogenetic evidence supports the hypothesis that IAMT is an evolutionarily ancient member of the SABATH family likely to play a critical role in IAA homeostasis across a wide range of plants.
植物SABATH蛋白家族包含一组相关的小分子甲基转移酶(MTs),这些酶催化结构广泛不同的天然化学物质的S-腺苷-L-甲硫氨酸依赖性甲基化。吲哚-3-乙酸(IAA)甲基转移酶(IAMT)是SABATH家族的成员,它通过IAA游离羧基的甲基化来调节植物组织中的IAA稳态。已确定拟南芥(Arabidopsis thaliana)IAMT(AtIAMT1)的晶体结构,并将其精修至2.75埃分辨率。其整体三级和四级结构分别与先前在来自布鲁尔氏克拉克花(Clarkia breweri)的相关水杨酸羧基甲基转移酶(CbSAMT)中观察到的两结构域双叶单体和二聚体排列非常相似。为了进一步了解SABATHs,尤其是IAMT的生物学功能和进化,我们分析了水稻(Oryza sativa)基因组中的SABATH基因家族。共鉴定出41个OsSABATH基因。表达分析表明,超过一半的OsSABATH基因在一个或多个器官中被转录。与AtIAMT1最相似的OsSABATH基因是OsSABATH4。在大肠杆菌中表达的OsSABATH4蛋白对IAA表现出最高水平的催化活性,因此被命名为OsIAMT1。OsIAMT1表现出与AtIAMT1和杨树IAMT(PtIAMT1)相似的动力学特性。以本文报道的实验确定的AtIAMT1结构为模板,对OsIAMT1和PtIAMT1进行结构建模,结果显示活性位点腔内IAMTs的保守结构特征与SABATH家族中功能不同的成员(如CbSAMT)不同。系统发育分析表明,来自拟南芥、水稻和杨树(Populus spp.)的IAMTs形成一个单系类群。因此,结构、生化和系统发育证据支持这样的假设,即IAMT是SABATH家族中一个进化上古老的成员,可能在广泛的植物中IAA稳态中起关键作用。