Gidofalvi Gergely, Mazziotti David A
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
J Chem Phys. 2007 Dec 28;127(24):244105. doi: 10.1063/1.2817602.
The variational two-electron reduced-density-matrix (2-RDM) method allows for the computation of accurate ground-state energies and 2-RDMs of atoms and molecules without the explicit construction of an N-electron wave function. While previous work on variational 2-RDM theory has focused on calculating full configuration-interaction energies, this work presents the first application toward approximating multiconfiguration self-consistent-field (MCSCF) energies via low-rank restrictions on the 1- and 2-RDMs. The 2-RDM method with two- or three-particle N-representability conditions reduces the exponential active-space scaling of MCSCF methods to a polynomial scaling. Because the first-order algorithm [Mazziotti, Phys. Rev. Lett. 93, 213001 (2004)] represents each form of the 1- and 2-RDMs by a matrix factorization, the RDMs are readily defined to have a low rank rather than a full rank by setting the matrix factors to be rectangular rather than square. Results for the potential energy surfaces of hydrogen fluoride, water, and the nitrogen molecule show that the low-rank 2-RDM method yields accurate approximations to the MCSCF energies. We also compute the energies along the symmetric stretch of a 20-atom hydrogen chain where traditional MCSCF calculations, requiring more than 17x10(9) determinants in the active space, could not be performed.
变分双电子约化密度矩阵(2-RDM)方法能够在不明确构建N电子波函数的情况下,计算原子和分子的精确基态能量及2-RDM。虽然此前关于变分2-RDM理论的工作主要集中在计算完全组态相互作用能量,但这项工作首次通过对1-RDM和2-RDM施加低秩限制来近似多组态自洽场(MCSCF)能量。具有两粒子或三粒子N可表示性条件的2-RDM方法将MCSCF方法的指数级活性空间标度降低为多项式标度。由于一阶算法[马佐蒂,《物理评论快报》93, 213001 (2004)]通过矩阵分解来表示1-RDM和2-RDM的每种形式,通过将矩阵因子设为矩形而非正方形,RDM很容易被定义为低秩而非满秩。氟化氢、水和氮分子的势能面结果表明,低秩2-RDM方法能对MCSCF能量给出精确近似。我们还计算了20原子氢链对称伸缩过程中的能量,在此过程中,传统的MCSCF计算因活性空间中需要超过17×10⁹个行列式而无法进行。