Suppr超能文献

应用于计算非平衡几何构型下分子能量和性质的参数化双电子约化密度矩阵方法。

Parametric two-electron reduced-density-matrix method applied to computing molecular energies and properties at nonequilibrium geometries.

作者信息

DePrince A Eugene, Kamarchik Eugene, Mazziotti David A

机构信息

Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.

出版信息

J Chem Phys. 2008 Jun 21;128(23):234103. doi: 10.1063/1.2937454.

Abstract

A parametric approach to the variational calculation of the two-electron reduced density matrix (2-RDM) for many-electron atoms and molecules has recently been developed in which the 2-RDM is parametrized to be both size consistent and nearly N-representable [C. Kollmar, J. Chem. Phys. 125, 084108 (2006); A. E. DePrince and D. A. Mazziotti, Phys. Rev. A 76, 049903 (2007)]. The parametric variational 2-RDM method is applied to computing ground-state molecular energies and properties at nonequilibrium geometries in significantly larger basis sets than previously employed. We study hydrogen abstraction from the hydroxide groups of H(2)O, NH(3)OH, and CH(3)OH. The 2-RDM method, parametrized by single and double excitations, shows significant improvement over coupled-cluster methods with similar excitations in predicting the shape of potential energy curves and bond-dissociation energies. Previous work completes the parametrization of the energy and 2-RDM by a system of n(2)h(2) normalization constraints, where n and h are the number of occupied and unoccupied orbitals, respectively. In the present paper, however, we show that the constraints can be eliminated by incorporating them into the energy and 2-RDM functions and, hence, the constrained optimization of the ground-state energy can be reformulated as an unconstrained optimization. The 2-RDMs from the parametric method are very nearly N-representable, and as measured by an l(2) norm, they are more accurate than the 2-RDMs from configuration interaction truncated at single and double excitations by an order of magnitude.

摘要

最近开发了一种用于多电子原子和分子的双电子约化密度矩阵(2-RDM)变分计算的参数化方法,其中2-RDM被参数化为既具有尺寸一致性又几乎是N可表示的[C. 科尔马尔,《化学物理杂志》125, 084108 (2006);A. E. 德普林斯和D. A. 马佐蒂,《物理评论A》76, 049903 (2007)]。参数化变分2-RDM方法被应用于在比以前使用的大得多的基组中计算非平衡几何构型下的基态分子能量和性质。我们研究了从H₂O、NH₃OH和CH₃OH的羟基上夺取氢的过程。由单激发和双激发参数化的2-RDM方法在预测势能曲线形状和键解离能方面比具有类似激发的耦合簇方法有显著改进。先前的工作通过一个n²h²归一化约束系统完成了能量和2-RDM的参数化,其中n和h分别是占据轨道和未占据轨道的数量。然而,在本文中,我们表明可以通过将这些约束纳入能量和2-RDM函数中来消除它们,因此,基态能量的约束优化可以重新表述为无约束优化。参数化方法得到的2-RDM非常接近N可表示,并且通过l₂范数测量,它们比单激发和双激发截断的组态相互作用得到的2-RDM精确一个数量级。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验