Suppr超能文献

均相和杂相有机铜酸盐阴离子[MeCuMe]⁻、[EtCuEt]⁻和[MeCuR]⁻的气相合成。

Gas-phase synthesis of the homo and hetero organocuprate anions [MeCuMe]-, [EtCuEt]-, and [MeCuR]-.

作者信息

Rijs Nicole, Khairallah George N, Waters Tom, O'Hair Richard A J

机构信息

School of Chemistry, University of Melbourne, Victoria 3010, Australia.

出版信息

J Am Chem Soc. 2008 Jan 23;130(3):1069-79. doi: 10.1021/ja0773397. Epub 2008 Jan 1.

Abstract

The homocuprates [MeCuMe]- and [EtCuEt]- were generated in the gas phase by double decarboxylation of the copper carboxylate centers [MeCO2CuO2CMe]- and [EtCO2CuO2CEt]-, respectively. The same strategy was explored for generating the heterocuprates [MeCuR]- from [MeCO2CuO2CR]- (R = Et, Pr, iPr, tBu, allyl, benzyl, Ph). The formation of these organocuprates was examined by multistage mass spectrometry experiments, including collision-induced dissociation and ion-molecule reactions, and theoretically by density functional theory. A number of side reactions were observed to be in competition with the second stage of decarboxylation, including loss of the anionic carboxylate ligand and loss of neutral alkene via beta-hydride transfer elimination. Interpretation of decarboxylation of the heterocarboxylates [MeCO2CuO2CR]- was more complex because of the possibility of decarboxylation occurring at either of the two different carboxylate ligands and giving rise to the possible isomers [MeCuO2CR]- or [MeCO2CuR]-. Ion-molecule reactions of the products of initial decarboxylation with allyl iodide resulted in C-C coupling to produce the ionic products [ICuO2CR]- or [MeCO2CuI]-, which provided insights into the relative population of the isomers, and indicated that the site of decarboxylation was dependent on R. For example, [MeCO2CuO2CtBu]- underwent decarboxylation at MeCO2- to give [MeCuO2CtBu]-, while [MeCO2CuO2CCH2Ph]- underwent decarboxylation at PhCH2CO2- to give [MeCO2CuCH2Ph]-. Each of the heterocuprates [MeCuR]- (R = Et, Pr, iPr, allyl, benzyl, Ph) could be generated by the double decarboxylation strategy. However, when R = tBu, intermediate [MeCuO2CtBu]- only underwent loss of tBuCO2-, a consequence of the steric bulk of tBu disfavoring decarboxylation and stabilizing the competing channel of carboxylate anion loss. Detailed DFT calculations were carried out on the potential energy surfaces for the first and second decarboxylation reactions of all homo- and heterocuprates, as well as possible competing reactions. These reveal that in all cases the first decarboxylation reaction is favored over loss of the carboxylate ligand. In contrast, other reactions such as carboxylate ligand loss and beta-hydride transfer become more competitive with the second decarboxylation reaction.

摘要

通过羧酸铜中心[MeCO₂CuO₂CMe]⁻和[EtCO₂CuO₂CEt]⁻分别进行双脱羧反应,在气相中生成了同核铜酸盐[MeCuMe]⁻和[EtCuEt]⁻。采用相同的策略,从[MeCO₂CuO₂CR]⁻(R = Et、Pr、iPr、tBu、烯丙基、苄基、Ph)生成了异核铜酸盐[MeCuR]⁻。通过多级质谱实验,包括碰撞诱导解离和离子 - 分子反应,以及用密度泛函理论进行理论计算,研究了这些有机铜酸盐的形成。观察到许多副反应与脱羧的第二阶段竞争,包括阴离子羧酸配体的损失和通过β - 氢化物转移消除中性烯烃。由于在两个不同的羧酸配体中的任何一个上都可能发生脱羧反应并产生可能的异构体[MeCuO₂CR]⁻或[MeCO₂CuR]⁻,异羧酸酯[MeCO₂CuO₂CR]⁻的脱羧反应的解释更为复杂。初始脱羧产物与烯丙基碘的离子 - 分子反应导致C - C偶联产生离子产物[ICuO₂CR]⁻或[MeCO₂CuI]⁻,这为异构体的相对丰度提供了见解,并表明脱羧位点取决于R。例如,[MeCO₂CuO₂CtBu]⁻在MeCO₂⁻处发生脱羧反应生成[MeCuO₂CtBu]⁻,而[MeCO₂CuO₂CCH₂Ph]⁻在PhCH₂CO₂⁻处发生脱羧反应生成[MeCO₂CuCH₂Ph]⁻。每个异核铜酸盐[MeCuR]⁻(R = Et、Pr、iPr、烯丙基、苄基、Ph)都可以通过双脱羧策略生成。然而,当R = tBu时,中间体[MeCuO₂CtBu]⁻仅发生tBuCO₂⁻的损失,这是由于tBu的空间位阻不利于脱羧反应并稳定了羧酸根阴离子损失的竞争通道。对所有同核和异核铜酸盐的第一和第二脱羧反应以及可能的竞争反应的势能面进行了详细的密度泛函理论计算。这些结果表明,在所有情况下,第一脱羧反应都比羧酸配体的损失更有利。相比之下,其他反应,如羧酸配体的损失和β - 氢化物转移,与第二脱羧反应的竞争变得更加激烈。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验