Maté Belén, Galvez Oscar, Martín-Llorente Beatriz, Moreno Miguel A, Herrero Víctor J, Escribano Rafael, Artacho Emilio
Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid, Spain. bmate@ iem.cfmac.csic.es
J Phys Chem A. 2008 Jan 24;112(3):457-65. doi: 10.1021/jp0769983. Epub 2008 Jan 3.
Ice mixtures of CO2 and H2O are studied using Fourier transform reflection-absorption infrared (RAIR) spectroscopy. Mixtures are prepared by sequential deposition or co-deposition of the two components from the gas phase onto an Al plate kept at 87 K inside a low-pressure chamber. Two CO2 structures are found in most experiments: a crystalline form similar to pure CO2, which evaporates when warming at 105 K, and a noncrystalline species which remains embedded in amorphous water ice after warming. Significant spectral variations are found depending on the deposition method and the thickness of the solid. Features characteristic of the RAIR technique appear in the spectral regions of the normal modes of the bending and asymmetric stretching CO2 vibrations. Simulations using Fresnel theory and Mie scattering are carried out with acceptable agreement with the experimental spectra of solids of variable thickness, from approximately 1 microm to the limit of nanoparticles. Theoretical calculations of a pure CO2 crystal are performed. The relaxed geometry of the solid and its vibrational spectrum are determined and compared to the experimental results.
利用傅里叶变换反射吸收红外(RAIR)光谱对二氧化碳和水的冰混合物进行了研究。混合物通过将两种组分从气相依次沉积或共沉积到低压室内保持在87K的铝板上来制备。在大多数实验中发现了两种二氧化碳结构:一种类似于纯二氧化碳的晶体形式,在105K升温时蒸发;另一种是非晶态物质,升温后仍嵌入非晶态水冰中。根据沉积方法和固体厚度发现了显著的光谱变化。RAIR技术的特征出现在二氧化碳弯曲和不对称伸缩振动的正常模式的光谱区域。使用菲涅耳理论和米氏散射进行了模拟,与厚度从大约1微米到纳米颗粒极限的可变厚度固体的实验光谱具有可接受的一致性。对纯二氧化碳晶体进行了理论计算。确定了固体的弛豫几何结构及其振动光谱,并与实验结果进行了比较。