Ogawa Yukino, Arakawa Kazuharu, Kaizu Kazunari, Miyoshi Fumihiko, Nakayama Yoichi, Tomita Masaru
Institute for Advanced Biosciences, Keio University, Fujisawa 252-8520, Japan.
Artif Life. 2008 Winter;14(1):29-48. doi: 10.1162/artl.2008.14.1.29.
The circadian clock of Drosophila is a model pathway for research in biological clock mechanisms, both with traditional experimental approaches and with emerging systems biology approaches utilizing mathematical modeling and in silico computer simulation. Dynamic diurnal oscillations are achieved by the complex interaction of components as a system, and mathematical reconstruction has proven to be an invaluable means of understanding such systematic behavior. In this study, we implemented eight published models of the Drosophila circadian clock in Systems Biology Markup Language (SBML) for comparative systems biology studies using E-Cell Simulation Environment version 3, to examine the system-level requirements for the clock mechanism to be robust, by calculating the period and amplitude sensitivity coefficients with simulation experiments. While all models were generally robust as determined by the network topology of the oscillatory feedback loop structure, existing models place relatively strong emphasis on transcription regulation, although this is a limitation on robustness. We suggest that more comprehensive modeling including protein phosphorylation, polymerization, and nuclear transport with regard to amplitude sensitivity will be necessary for understanding the light entrainment and temperature compensation of circadian clocks.
果蝇的昼夜节律钟是生物钟机制研究的一个模型途径,既可以通过传统实验方法,也可以利用新兴的系统生物学方法,即运用数学建模和计算机模拟。作为一个系统,各组成部分之间复杂的相互作用实现了动态的昼夜振荡,而数学重建已被证明是理解这种系统行为的一种非常有价值的手段。在本研究中,我们使用系统生物学标记语言(SBML)实现了八个已发表的果蝇昼夜节律钟模型,以便在E-Cell模拟环境3中进行比较系统生物学研究,通过模拟实验计算周期和振幅敏感性系数,来研究生物钟机制稳健性的系统层面要求。虽然根据振荡反馈环结构的网络拓扑结构判断,所有模型总体上都是稳健的,但现有模型相对更强调转录调控,不过这是稳健性方面的一个局限。我们认为,对于理解昼夜节律钟的光诱导和温度补偿而言,更全面的建模(包括蛋白质磷酸化、聚合以及核转运方面的振幅敏感性)将是必要的。