Shaik O S, Sager S, Slaby O, Lebiedz D
Interdisciplinary Center for Scientific Computing, University of Heidelberg, Germany.
IET Syst Biol. 2008 Jan;2(1):16-23. doi: 10.1049/iet-syb:20070016.
Periodic cellular processes and especially circadian rhythms governed by the oscillating expression of a set of genes based on feedback regulation by their products have become an important issue in biology and medicine. The central circadian clock is an autonomous biochemical oscillator with a period close to 24 h. Research in chronobiology demonstrated that light stimuli can be used to delay or advance the phase of the oscillator, allowing it to influence the underlying physiological processes. Phase shifting and restoration of altered rhythms can generally be viewed as open-loop control problems that may be used for therapeutic purposes in diseases. A circadian oscillator model of the central clock mechanism is studied for the fruit fly Drosophila and show how model-based mixed-integer optimal control allows for the design of chronomodulated pulse-stimuli schemes achieving circadian rhythm restoration in mutants and optimal phase synchronisation between the clock and its environment.
周期性细胞过程,尤其是由一组基因基于其产物的反馈调节而产生的振荡表达所控制的昼夜节律,已成为生物学和医学中的一个重要问题。核心昼夜节律钟是一个自主生化振荡器,其周期接近24小时。生物钟学的研究表明,光刺激可用于延迟或提前振荡器的相位,使其能够影响潜在的生理过程。相位转移和改变节律的恢复通常可视为开环控制问题,可用于疾病的治疗目的。针对果蝇研究了核心生物钟机制的昼夜节律振荡器模型,并展示了基于模型的混合整数最优控制如何设计出能在突变体中实现昼夜节律恢复以及在生物钟与其环境之间实现最佳相位同步的时辰调制脉冲刺激方案。