Suppr超能文献

利用合成数据探索转录网络推理算法的运行特性。

Exploring the operational characteristics of inference algorithms for transcriptional networks by means of synthetic data.

作者信息

Van Leemput Koenraad, Van den Bulcke Tim, Dhollander Thomas, De Moor Bart, Marchal Kathleen, van Remortel Piet

机构信息

ISLab (Intelligent Systems Lab), Universiteit Antwerpen, Antwerpen, Belgium.

出版信息

Artif Life. 2008 Winter;14(1):49-63. doi: 10.1162/artl.2008.14.1.49.

Abstract

The development of structure-learning algorithms for gene regulatory networks depends heavily on the availability of synthetic data sets that contain both the original network and associated expression data. This article reports the application of SynTReN, an existing network generator that samples topologies from existing biological networks and uses Michaelis-Menten and Hill enzyme kinetics to simulate gene interactions. We illustrate the effects of different aspects of the expression data on the quality of the inferred network. The tested expression data parameters are network size, network topology, type and degree of noise, quantity of expression data, and interaction types between genes. This is done by applying three well-known inference algorithms to SynTReN data sets. The results show the power of synthetic data in revealing operational characteristics of inference algorithms that are unlikely to be discovered by means of biological microarray data only.

摘要

基因调控网络结构学习算法的发展在很大程度上依赖于合成数据集的可用性,这些数据集既包含原始网络又包含相关的表达数据。本文报告了SynTReN的应用,SynTReN是一种现有的网络生成器,它从现有的生物网络中采样拓扑结构,并使用米氏和希尔酶动力学来模拟基因相互作用。我们阐述了表达数据不同方面对推断网络质量的影响。所测试的表达数据参数包括网络大小、网络拓扑、噪声类型和程度、表达数据量以及基因之间的相互作用类型。这是通过将三种著名的推断算法应用于SynTReN数据集来完成的。结果表明,合成数据在揭示推断算法的操作特性方面具有强大作用,而这些特性仅通过生物微阵列数据不太可能被发现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验