Sheeba Vasu, Sharma Vijay K, Gu Huaiyu, Chou Yu-Ting, O'Dowd Diane K, Holmes Todd C
Department of Physiology and Biophysics, University of California, Irvine, California 92612, USA.
J Neurosci. 2008 Jan 2;28(1):217-27. doi: 10.1523/JNEUROSCI.4087-07.2008.
Circadian pacemaker circuits consist of ensembles of neurons, each expressing molecular oscillations, but how circuit-wide coordination of multiple oscillators regulates rhythmic physiological and behavioral outputs remains an open question. To investigate the relationship between the pattern of oscillator phase throughout the circadian pacemaker circuit and locomotor activity rhythms in Drosophila, we perturbed the electrical activity and pigment dispersing factor (PDF) levels of the lateral ventral neurons (LNv) and assayed their combinatorial effect on molecular oscillations in different parts of the circuit and on locomotor activity behavior. Altered electrical activity of PDF-expressing LNv causes initial behavioral arrhythmicity followed by gradual long-term emergence of two concurrent short- and long-period circadian behavioral activity bouts in approximately 60% of flies. Initial desynchrony of circuit-wide molecular oscillations is followed by the emergence of a novel pattern of period (PER) synchrony whereby two subgroups of dorsal neurons (DN1 and DN2) exhibit PER oscillation peaks coinciding with two activity bouts, whereas other neuronal subgroups exhibit a single PER peak coinciding with one of the two activity bouts. The emergence of this novel pattern of circuit-wide oscillator synchrony is not accompanied by concurrent change in the electrical activity of the LNv. In PDF-null flies, altered electrical activity of LNv drives a short-period circadian activity bout only, indicating that PDF-independent factors underlie the short-period circadian activity component and that the long-period circadian component is PDF-dependent. Thus, polyrhythmic behavioral patterns in electrically manipulated flies are regulated by circuit-wide coordination of molecular oscillations and electrical activity of LNv via PDF-dependent and -independent factors.
昼夜节律起搏器回路由神经元集合组成,每个神经元都表达分子振荡,但多个振荡器的全回路协调如何调节有节奏的生理和行为输出仍是一个悬而未决的问题。为了研究果蝇昼夜节律起搏器回路中振荡器相位模式与运动活动节律之间的关系,我们干扰了腹外侧神经元(LNv)的电活动和色素分散因子(PDF)水平,并分析了它们对回路不同部分分子振荡和运动活动行为的组合效应。表达PDF的LNv电活动改变会导致最初的行为节律紊乱,随后约60%的果蝇逐渐长期出现两种同时存在的短周期和长周期昼夜行为活动周期。全回路分子振荡最初的不同步之后是一种新的周期(PER)同步模式的出现,即背侧神经元的两个亚组(DN1和DN2)表现出与两个活动周期重合的PER振荡峰值,而其他神经元亚组表现出与两个活动周期之一重合的单个PER峰值。这种全回路振荡器同步新模式的出现并未伴随着LNv电活动的同时变化。在无PDF的果蝇中,LNv电活动的改变仅驱动一个短周期昼夜活动周期,这表明PDF非依赖性因素是短周期昼夜活动成分的基础,而长周期昼夜成分是PDF依赖性的。因此,电操控果蝇中的多节律行为模式是由分子振荡的全回路协调以及LNv通过PDF依赖性和非依赖性因素的电活动调节的。