Suzuki Hitoshi, Moldoveanu Zina, Hall Stacy, Brown Rhubell, Vu Huong L, Novak Lea, Julian Bruce A, Tomana Milan, Wyatt Robert J, Edberg Jeffrey C, Alarcón Graciela S, Kimberly Robert P, Tomino Yasuhiko, Mestecky Jiri, Novak Jan
University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
J Clin Invest. 2008 Feb;118(2):629-39. doi: 10.1172/JCI33189.
Aberrant glycosylation of IgA1 plays an essential role in the pathogenesis of IgA nephropathy. This abnormality is manifested by a deficiency of galactose in the hinge-region O-linked glycans of IgA1. Biosynthesis of these glycans occurs in a stepwise fashion beginning with the addition of N-acetylgalactosamine by the enzyme N-acetylgalactosaminyltransferase 2 and continuing with the addition of either galactose by beta1,3-galactosyltransferase or a terminal sialic acid by a N-acetylgalactosamine-specific alpha2,6-sialyltransferase. To identify the molecular basis for the aberrant IgA glycosylation, we established EBV-immortalized IgA1-producing cells from peripheral blood cells of patients with IgA nephropathy. The secreted IgA1 was mostly polymeric and had galactose-deficient O-linked glycans, characterized by a terminal or sialylated N-acetylgalactosamine. As controls, we showed that EBV-immortalized cells from patients with lupus nephritis and healthy individuals did not produce IgA with the defective galactosylation pattern. Analysis of the biosynthetic pathways in cloned EBV-immortalized cells from patients with IgA nephropathy indicated a decrease in beta1,3-galactosyltransferase activity and an increase in N-acetylgalactosamine-specific alpha2,6-sialyltransferase activity. Also, expression of beta1,3-galactosyltransferase was significantly lower, and that of N-acetylgalactosamine-specific alpha2,6-sialyltransferase was significantly higher than the expression of these genes in the control cells. Thus, our data suggest that premature sialylation likely contributes to the aberrant IgA1 glycosylation in IgA nephropathy and may represent a new therapeutic target.
IgA1的异常糖基化在IgA肾病的发病机制中起关键作用。这种异常表现为IgA1铰链区O-连接聚糖中半乳糖缺乏。这些聚糖的生物合成以逐步方式进行,首先由N-乙酰半乳糖胺基转移酶2添加N-乙酰半乳糖胺,接着由β1,3-半乳糖基转移酶添加半乳糖或由N-乙酰半乳糖胺特异性α2,6-唾液酸转移酶添加末端唾液酸。为了确定异常IgA糖基化的分子基础,我们从IgA肾病患者的外周血细胞中建立了EB病毒永生化的IgA1产生细胞。分泌的IgA1大多为多聚体,具有缺乏半乳糖的O-连接聚糖,其特征为末端或唾液酸化的N-乙酰半乳糖胺。作为对照,我们发现狼疮性肾炎患者和健康个体的EB病毒永生化细胞不会产生具有缺陷性半乳糖基化模式的IgA。对IgA肾病患者克隆的EB病毒永生化细胞中生物合成途径的分析表明,β1,3-半乳糖基转移酶活性降低,而N-乙酰半乳糖胺特异性α2,6-唾液酸转移酶活性增加。此外,β1,3-半乳糖基转移酶的表达显著低于对照细胞,而N-乙酰半乳糖胺特异性α2,6-唾液酸转移酶的表达显著高于对照细胞。因此,我们的数据表明,过早的唾液酸化可能导致IgA肾病中异常的IgA1糖基化,并且可能代表一个新的治疗靶点。