Salzmann Susanne, Kleinschmidt Martin, Tatchen Jörg, Weinkauf Rainer, Marian Christel M
Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, D-40225, Düsseldorf, Germany.
Phys Chem Chem Phys. 2008 Jan 21;10(3):380-92. doi: 10.1039/b710380h. Epub 2007 Sep 28.
(Time-dependent) Kohn-Sham density functional theory and a combined density functional/multi-reference configuration interaction method (DFT/MRCI) were employed to explore the ground and low-lying electronically excited states of thiophene. Spin-orbit coupling was taken into account using an efficient, nonempirical mean-field Hamiltonian. Phosphorescence lifetimes were calculated by means of spock.ci, a selecting direct multi-reference spin-orbit configuration interaction program. Throughout this paper, we use the following nomenclature: S1, S2,..., T1, T2,..., denominate electronic structures in their energetic order at the ground state minimum geometry, whereas S1, S2,..., T1, T2,..., refers to the actual order of electronic states at a given nuclear geometry. Multiple minima were found on the first excited singlet (S1) potential energy hypersurface with electronic structures S1 (piHOMO-1-->pi+piHOMO-->pi), S2 (piHOMO-->pi), and S3 (piHOMO-->sigma*) corresponding to the 2 1A1 (S1), 1 1B2 (S2), and 1 1B1 (S3) states in the vertical absorption spectrum, respectively. The S1 and S2 minimum geometries show out-of-plane deformations of the ring. The S3 electronic structure yields the global minimum on the S1 surface with an adiabatic excitation energy of merely 3.81 eV. It exhibits an asymmetric planar nuclear arrangement with one significantly elongated C-S bond. A constrained minimum energy path calculation connecting the S1 and S3 minima suggests that even low-lying vibrational levels of the S1 potential well can access the global minimum of the S1 surface. Nonradiative decay of the electronically excited singlet population to the electronic ground state via a close-by conical intersection will be fast. According to our work, this ring opening mechanism is most likely responsible for the lack of fluorescence in thiophene and the ultrafast decay of the S1 vibrational levels, as observed in time-resolved pump-probe femtosecond multiphoton ionization experiments. An alternative relaxation pathway leads from the S1 minimum via vibronic coupling to the S2 potential well followed by fast inter-system crossing to the T2 state. For an estimate of individual rate constants a quantum dynamical treatment will be required. The global minimum of the T1 surface has a chair-like nuclear conformation and corresponds to the T1 (1 3B2, piHOMO-->pi) electronic structure. Phosphorescence is weak here with a calculated radiative lifetime of 0.59 s. For the second potential well on the T1 surface with T3 (1 3B1, piHOMO-->sigma*) electronic structure, nonradiative processes are predicted to dominate the triplet decay.
采用(含时间依赖性的)科恩-沈密度泛函理论以及一种组合的密度泛函/多参考组态相互作用方法(DFT/MRCI)来探究噻吩的基态和低电子激发态。使用一种高效的、非经验性的平均场哈密顿量来考虑自旋-轨道耦合。通过spock.ci(一个选择性直接多参考自旋-轨道组态相互作用程序)计算磷光寿命。在本文中,我们使用以下命名法:S1、S2、…、T1、T2、…,按基态最小几何结构下的能量顺序命名电子结构,而S1、S2、…、T1、T2、…指给定核几何结构下电子态的实际顺序。在第一激发单重态(S1)势能超曲面上发现了多个极小值,其电子结构S1(πHOMO - 1→π + πHOMO→π)、S2(πHOMO→π)和S3(πHOMO→σ*)分别对应垂直吸收光谱中的2 1A1(S1)、1 1B2(S2)和1 1B1(S3)态。S1和S2的最小几何结构显示出环的面外变形。S3电子结构在S1表面产生全局最小值,绝热激发能仅为3.81 eV。它呈现出一种不对称的平面核排列,其中一个C - S键显著伸长。连接S1和S3极小值的受限最小能量路径计算表明,即使是S1势阱的低振动能级也能到达S1表面的全局最小值。通过附近的锥形交叉,电子激发单重态粒子向电子基态的非辐射衰变将很快。根据我们的工作,这种开环机制很可能是噻吩缺乏荧光以及S1振动能级超快衰变的原因,这在时间分辨泵浦 - 探测飞秒多光子电离实验中有所观察。另一种弛豫途径是从S1极小值通过振动耦合到S2势阱,然后快速系间窜越到T2态。为了估计各个速率常数,将需要进行量子动力学处理。T1表面的全局最小值具有椅状核构象,对应于T1(1 3B2,πHOMO→π)电子结构。这里磷光较弱,计算得到的辐射寿命为0.59 s。对于T1表面上具有T3(1 3B1,πHOMO→σ*)电子结构的第二个势阱,预计非辐射过程将主导三重态衰变。