Kóna Juraj
International School for Advanced Studies (SISSA) and Democritos Modeling Center for Research in Atomistic Simulation (INFM), via Beirut 2-4, 34014 Trieste, Italy.
Org Biomol Chem. 2008 Jan 21;6(2):359-65. doi: 10.1039/b715828a. Epub 2007 Dec 6.
Two possible mechanisms of the irreversible inhibition of HIV-1 protease by epoxide inhibitors are investigated on an enzymatic model using ab initio (MP2) and density functional theory (DFT) methods (B3LYP, MPW1K and M05-2X). The calculations predict the inhibition as a general acid-catalyzed nucleophilic substitution reaction proceeding by a concerted SN2 mechanism with a reaction barrier of ca. 15-21 kcal mol(-1). The irreversible nature of the inhibition is characterized by a large negative reaction energy of ca. -17-(-24) kcal mol(-1). A mechanism with a direct proton transfer from an aspartic acid residue of the active site onto the epoxide ring has been shown to be preferred compared to one with the proton transfer from the acid catalyst facilitated by a bridging catalytic water molecule. Based on the geometry of the transition state, structural data important for the design of irreversible epoxide inhibitors of HIV-1 protease were defined. Here we also briefly discuss differences between the epoxide ring-opening reaction in HIV-1 protease and epoxide hydrolase, and the accuracy of the DFT method used.
利用从头算(MP2)和密度泛函理论(DFT)方法(B3LYP、MPW1K和M05 - 2X)在酶模型上研究了环氧化物抑制剂对HIV - 1蛋白酶不可逆抑制的两种可能机制。计算预测该抑制作用是一种一般酸催化的亲核取代反应,通过协同的SN2机制进行,反应势垒约为15 - 21 kcal mol⁻¹。抑制作用的不可逆性质表现为约 - 17 - (-24) kcal mol⁻¹的大的负反应能。与由桥连催化水分子促进酸催化剂进行质子转移的机制相比,从活性位点的天冬氨酸残基直接向环氧环进行质子转移的机制已被证明是更可取的。基于过渡态的几何结构,确定了对HIV - 1蛋白酶不可逆环氧化物抑制剂设计重要的结构数据。在此我们还简要讨论了HIV - 1蛋白酶中环氧化物开环反应与环氧化物水解酶之间的差异,以及所使用的DFT方法的准确性。