Suppr超能文献

一种用于面部特征提取的多重最大散度差判别准则。

A multiple maximum scatter difference discriminant criterion for facial feature extraction.

作者信息

Song Fengxi, Zhang David, Mei Dayong, Guo Zhongwei

机构信息

New Star Research Institute of Applied Technology, Hefei 230031, China.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2007 Dec;37(6):1599-606. doi: 10.1109/tsmcb.2007.906579.

Abstract

Maximum scatter difference (MSD) discriminant criterion was a recently presented binary discriminant criterion for pattern classification that utilizes the generalized scatter difference rather than the generalized Rayleigh quotient as a class separability measure, thereby avoiding the singularity problem when addressing small-sample-size problems. MSD classifiers based on this criterion have been quite effective on face-recognition tasks, but as they are binary classifiers, they are not as efficient on large-scale classification tasks. To address the problem, this paper generalizes the classification-oriented binary criterion to its multiple counterpart--multiple MSD (MMSD) discriminant criterion for facial feature extraction. The MMSD feature-extraction method, which is based on this novel discriminant criterion, is a new subspace-based feature-extraction method. Unlike most other subspace-based feature-extraction methods, the MMSD computes its discriminant vectors from both the range of the between-class scatter matrix and the null space of the within-class scatter matrix. The MMSD is theoretically elegant and easy to calculate. Extensive experimental studies conducted on the benchmark database, FERET, show that the MMSD out-performs state-of-the-art facial feature-extraction methods such as null space method, direct linear discriminant analysis (LDA), eigenface, Fisherface, and complete LDA.

摘要

最大散度差(MSD)判别准则是一种最近提出的用于模式分类的二元判别准则,它利用广义散度差而非广义瑞利商作为类可分性度量,从而在处理小样本量问题时避免了奇异性问题。基于该准则的MSD分类器在人脸识别任务中相当有效,但由于它们是二元分类器,在大规模分类任务中效率不高。为了解决这个问题,本文将面向分类的二元准则推广到其多元对应物——用于面部特征提取的多元MSD(MMSD)判别准则。基于这种新型判别准则的MMSD特征提取方法是一种新的基于子空间的特征提取方法。与大多数其他基于子空间的特征提取方法不同,MMSD从类间散度矩阵的值域和类内散度矩阵的零空间计算其判别向量。MMSD在理论上很优美且易于计算。在基准数据库FERET上进行的大量实验研究表明,MMSD优于诸如零空间方法、直接线性判别分析(LDA)、特征脸、Fisherface和完全LDA等当前最先进的面部特征提取方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验