Boukai Akram I, Bunimovich Yuri, Tahir-Kheli Jamil, Yu Jen-Kan, Goddard William A, Heath James R
Division of Chemistry and Chemical Engineering, MC 127-72, 1200 East California Blvd, California Institute of Technology, Pasadena, California 91125, USA.
Nature. 2008 Jan 10;451(7175):168-71. doi: 10.1038/nature06458.
Thermoelectric materials interconvert thermal gradients and electric fields for power generation or for refrigeration. Thermoelectrics currently find only niche applications because of their limited efficiency, which is measured by the dimensionless parameter ZT-a function of the Seebeck coefficient or thermoelectric power, and of the electrical and thermal conductivities. Maximizing ZT is challenging because optimizing one physical parameter often adversely affects another. Several groups have achieved significant improvements in ZT through multi-component nanostructured thermoelectrics, such as Bi(2)Te(3)/Sb(2)Te(3) thin-film superlattices, or embedded PbSeTe quantum dot superlattices. Here we report efficient thermoelectric performance from the single-component system of silicon nanowires for cross-sectional areas of 10 nm x 20 nm and 20 nm x 20 nm. By varying the nanowire size and impurity doping levels, ZT values representing an approximately 100-fold improvement over bulk Si are achieved over a broad temperature range, including ZT approximately 1 at 200 K. Independent measurements of the Seebeck coefficient, the electrical conductivity and the thermal conductivity, combined with theory, indicate that the improved efficiency originates from phonon effects. These results are expected to apply to other classes of semiconductor nanomaterials.
热电材料可将热梯度和电场相互转换,用于发电或制冷。由于热电材料的效率有限,目前它们仅在一些特定领域得到应用,其效率由无量纲参数ZT衡量,ZT是塞贝克系数或热电势以及电导率和热导率的函数。最大化ZT具有挑战性,因为优化一个物理参数往往会对另一个参数产生不利影响。几个研究小组通过多组分纳米结构热电材料,如Bi(2)Te(3)/Sb(2)Te(3)薄膜超晶格或嵌入式PbSeTe量子点超晶格,在ZT方面取得了显著进展。在此,我们报道了对于横截面面积为10 nm×20 nm和20 nm×20 nm的硅纳米线单组分系统的高效热电性能。通过改变纳米线尺寸和杂质掺杂水平,在很宽的温度范围内实现了ZT值,相较于体硅提高了约100倍,包括在200 K时ZT约为1。对塞贝克系数、电导率和热导率的独立测量以及理论分析表明,效率的提高源于声子效应。这些结果有望应用于其他类别的半导体纳米材料。