Suppr超能文献

相似文献

1
Functional evolution of the p53 regulatory network through its target response elements.
Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):944-9. doi: 10.1073/pnas.0704694105. Epub 2008 Jan 10.
2
Evolution of p53 transactivation specificity through the lens of a yeast-based functional assay.
PLoS One. 2015 Feb 10;10(2):e0116177. doi: 10.1371/journal.pone.0116177. eCollection 2015.
3
Functionally distinct polymorphic sequences in the human genome that are targets for p53 transactivation.
Proc Natl Acad Sci U S A. 2005 May 3;102(18):6431-6. doi: 10.1073/pnas.0501721102. Epub 2005 Apr 20.
4
Divergent evolution of human p53 binding sites: cell cycle versus apoptosis.
PLoS Genet. 2007 Jul;3(7):e127. doi: 10.1371/journal.pgen.0030127. Epub 2007 Jun 15.
5
Whole-genome cartography of p53 response elements ranked on transactivation potential.
BMC Genomics. 2015 Jun 17;16(1):464. doi: 10.1186/s12864-015-1643-9.
6
Noncanonical DNA motifs as transactivation targets by wild type and mutant p53.
PLoS Genet. 2008 Jun 27;4(6):e1000104. doi: 10.1371/journal.pgen.1000104.
7
Potentiating the p53 network.
Discov Med. 2010 Jul;10(50):94-100.
9
Interactions of chromatin context, binding site sequence content, and sequence evolution in stress-induced p53 occupancy and transactivation.
PLoS Genet. 2015 Jan 8;11(1):e1004885. doi: 10.1371/journal.pgen.1004885. eCollection 2015 Jan.
10
Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity.
Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):9934-9. doi: 10.1073/pnas.1633803100. Epub 2003 Aug 8.

引用本文的文献

1
The TP53 tumor suppressor gene: From molecular biology to clinical investigations.
J Intern Med. 2025 Aug;298(2):78-96. doi: 10.1111/joim.20106. Epub 2025 Jun 16.
2
Human HDAC6 senses valine abundancy to regulate DNA damage.
Nature. 2025 Jan;637(8044):215-223. doi: 10.1038/s41586-024-08248-5. Epub 2024 Nov 20.
3
p53motifDB: integration of genomic information and tumor suppressor p53 binding motifs.
bioRxiv. 2024 Sep 25:2024.09.24.614594. doi: 10.1101/2024.09.24.614594.
4
germline pathogenic variants in modern humans were likely originated during recent human history.
NAR Cancer. 2023 Jun 9;5(3):zcad025. doi: 10.1093/narcan/zcad025. eCollection 2023 Sep.
5
The complex architecture of p53 binding sites.
Nucleic Acids Res. 2021 Feb 22;49(3):1364-1382. doi: 10.1093/nar/gkaa1283.
6
Tumor suppressor p53: from engaging DNA to target gene regulation.
Nucleic Acids Res. 2020 Sep 18;48(16):8848-8869. doi: 10.1093/nar/gkaa666.
7
Regulating tumor suppressor genes: post-translational modifications.
Signal Transduct Target Ther. 2020 Jun 10;5(1):90. doi: 10.1038/s41392-020-0196-9.
10
Shaping the regulation of the p53 mRNA tumour suppressor: the co-evolution of genetic signatures.
BMC Cancer. 2019 Sep 13;19(1):915. doi: 10.1186/s12885-019-6118-y.

本文引用的文献

1
Divergent evolution of human p53 binding sites: cell cycle versus apoptosis.
PLoS Genet. 2007 Jul;3(7):e127. doi: 10.1371/journal.pgen.0030127. Epub 2007 Jun 15.
5
Derivation of the consensus DNA-binding sequence for p63 reveals unique requirements that are distinct from p53.
FEBS Lett. 2006 Aug 7;580(18):4544-50. doi: 10.1016/j.febslet.2006.07.004. Epub 2006 Jul 25.
7
A SNP in the flt-1 promoter integrates the VEGF system into the p53 transcriptional network.
Proc Natl Acad Sci U S A. 2006 Jan 31;103(5):1406-11. doi: 10.1073/pnas.0508103103. Epub 2006 Jan 23.
8
A global map of p53 transcription-factor binding sites in the human genome.
Cell. 2006 Jan 13;124(1):207-19. doi: 10.1016/j.cell.2005.10.043.
10
Functional diversity in the gene network controlled by the master regulator p53 in humans.
Cell Cycle. 2005 Aug;4(8):1026-9. doi: 10.4161/cc.4.8.1904. Epub 2005 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验