Bame Napoleon, Bowong Samuel, Mbang Joseph, Sallet Gauthier, Tewa Jean-Jules
Department of Mathematics and Computer Science, University of Dschang, Cameroon.
Math Biosci Eng. 2008 Jan;5(1):20-33. doi: 10.3934/mbe.2008.5.20.
We compute the basic reproduction ratio of a SEIS model with n classes of latent individuals and bilinear incidence. The system exhibits the traditional behaviour. We prove that if R(0) < or = 1, then the disease-free equilibrium is globally asymptotically stable on the nonnegative orthant and if R (0) > 1, an endemic equilibrium exists and is globally asymptotically stable on the positive orthant.
我们计算了具有(n)类潜伏个体和双线性发病率的SEIS模型的基本再生数。该系统呈现出传统行为。我们证明,如果(R(0)\leq1),那么无病平衡点在非负卦限上是全局渐近稳定的;如果(R(0)>1),则存在一个地方病平衡点,且在正卦限上是全局渐近稳定的。