Paulhus Calah, Wang Xiang-Sheng
a Department of Mathematics , Southeast Missouri State University , Cape Girardeau , MO 63701 , USA.
J Biol Dyn. 2015;9 Suppl 1:45-50. doi: 10.1080/17513758.2014.931474. Epub 2014 Jun 30.
We study a susceptible-infected-susceptible model with distributed delays. By constructing suitable Lyapunov functionals, we demonstrate that the global dynamics of this model is fully determined by the basic reproductive ratio R0. To be specific, we prove that if R0 ≤ 1, then the disease-free equilibrium is globally asymptotically stable. On the other hand, if R0>1, then the endemic equilibrium is globally asymptotically stable. It is remarkable that the model dynamics is independent of the probability of immunity lost.
我们研究了一个具有分布时滞的易感-感染-易感模型。通过构造合适的李雅普诺夫泛函,我们证明了该模型的全局动态完全由基本再生数(R_0)决定。具体而言,我们证明如果(R_0\leq1),那么无病平衡点是全局渐近稳定的。另一方面,如果(R_0 > 1),那么地方病平衡点是全局渐近稳定的。值得注意的是,模型动态与免疫丧失的概率无关。