Llorens-Cortes C, Kordon C
INSERM, Collège de France, Paris, France.
J Neuroendocrinol. 2008 Mar;20(3):279-89. doi: 10.1111/j.1365-2826.2007.01642.x. Epub 2008 Jan 11.
The hyperactivity of the brain renin-angiotensin system (RAS) has been implicated in the development and maintenance of hypertension in several types of experimental and genetic hypertension animal models. Among the main bioactive peptides of the brain RAS, angiotensin (Ang) II and Ang III display the same affinity for type 1 and type 2 Ang II receptors. Both peptides, injected intracerebroventricularly, similarly increase arginine vasopressin (AVP) release and blood pressure (BP); however, because Ang II is converted in vivo to Ang III, the identity of the true effector is unknown. We review new insights into the predominant role of brain Ang III in the control of BP, underlining the fact that brain aminopeptidase A (APA), the enzyme generating brain Ang III, may therefore be an interesting candidate target for the treatment of hypertension. This justifies the development of potent systemically active APA inhibitors, such as RB150, as prototypes of a new class of antihypertensive agents for the treatment of certain forms of hypertension. We also searched for a putative angiotensin receptor subtype specific for Ang III and isolated a seven transmembrane-domain G protein-coupled receptor corresponding to the receptor for apelin, a newly-discovered peptide isolated from bovine stomach. Apelin and its receptor are expressed in magnocellular vasopressinergic neurones in the hypothalamus. The central injection of apelin in lactating rats decreases the phasic electrical activity of vasopressinergic neurones and the systemic secretion of AVP, inducing water diuresis. Apelin is therefore a natural inhibitor of the antidiuretic effect of AVP. In addition, systemic administration of apelin decreases BP, improves cardiac contractility and reduces cardiac loading. The development of nonpeptide agonists of the apelin receptor may provide new therapeutic tools for treating water retention, hyponatraemia and cardiovascular diseases. Angiotensins and apelin thus exert opposing but complementary effects, and are thereby determinant for the maintenance of body fluid homeostasis and cardiovascular functions.
大脑肾素-血管紧张素系统(RAS)功能亢进与多种实验性和遗传性高血压动物模型中高血压的发生和维持有关。在大脑RAS的主要生物活性肽中,血管紧张素(Ang)II和Ang III对1型和2型Ang II受体具有相同的亲和力。脑室内注射这两种肽,同样会增加精氨酸加压素(AVP)释放和血压(BP);然而,由于Ang II在体内会转化为Ang III,真正的效应物尚不清楚。我们回顾了关于大脑Ang III在血压控制中主要作用的新见解,强调了这样一个事实,即产生大脑Ang III的酶——脑氨肽酶A(APA),可能是治疗高血压的一个有吸引力的候选靶点。这为开发强效的全身活性APA抑制剂(如RB150)提供了依据,这类抑制剂可作为治疗某些类型高血压的新型抗高血压药物的原型。我们还寻找了一种假定的对Ang III特异的血管紧张素受体亚型,并分离出一种七跨膜结构域的G蛋白偶联受体,它与apelin受体相对应,apelin是一种从牛胃中分离出的新发现的肽。Apelin及其受体在下丘脑的大细胞加压素能神经元中表达。给哺乳期大鼠脑室内注射apelin可降低加压素能神经元的相位电活动和AVP的全身分泌,诱导水利尿。因此,Apelin是AVP抗利尿作用的天然抑制剂。此外,全身给予apelin可降低血压、改善心脏收缩力并减轻心脏负荷。Apelin受体的非肽激动剂的开发可能为治疗水潴留、低钠血症和心血管疾病提供新的治疗工具。血管紧张素和apelin因此发挥相反但互补的作用,从而对维持体液稳态和心血管功能起决定性作用。