Suppr超能文献

通过结合边界和区域信息实现对称封闭边界的全局最优分组。

Globally optimal grouping for symmetric closed boundaries by combining boundary and region information.

作者信息

Stahl Joachim S, Wang Song

机构信息

Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2008 Mar;30(3):395-411. doi: 10.1109/TPAMI.2007.1186.

Abstract

Many natural and man-made structures have a boundary that shows a certain level of bilateral symmetry, a property that plays an important role in both human and computer vision. In this paper, we present a new grouping method for detecting closed boundaries with symmetry. We first construct a new type of grouping token in the form of symmetric trapezoids by pairing line segments detected from the image. A closed boundary can then be achieved by connecting some trapezoids with a sequence of gap-filling quadrilaterals. For such a closed boundary, we define a unified grouping cost function in a ratio form: the numerator reflects the boundary information of proximity and symmetry and the denominator reflects the region information of the enclosed area. The introduction of the region-area information in the denominator is able to avoid a bias toward shorter boundaries. We then develop a new graph model to represent the grouping tokens. In this new graph model, the grouping cost function can be encoded by carefully designed edge weights and the desired optimal boundary corresponds to a special cycle with a minimum ratio-form cost. We finally show that such a cycle can be found in polynomial time using a previous graph algorithm. We implement this symmetry-grouping method and test it on a set of synthetic data and real images. The performance is compared to two previous grouping methods that do not consider symmetry in their grouping cost functions.

摘要

许多自然和人造结构都有一个呈现出一定程度双侧对称的边界,这一特性在人类视觉和计算机视觉中都起着重要作用。在本文中,我们提出了一种用于检测具有对称性的封闭边界的新分组方法。我们首先通过对从图像中检测到的线段进行配对,构建一种对称梯形形式的新型分组标记。然后,可以通过用一系列填充间隙的四边形连接一些梯形来实现封闭边界。对于这样一个封闭边界,我们以比率形式定义一个统一的分组成本函数:分子反映接近度和对称性的边界信息,分母反映封闭区域的区域信息。分母中引入区域面积信息能够避免对较短边界的偏向。然后,我们开发了一种新的图模型来表示分组标记。在这个新的图模型中,分组成本函数可以通过精心设计的边权重进行编码,并且期望的最优边界对应于具有最小比率形式成本的特殊循环。我们最终表明,使用先前的图算法可以在多项式时间内找到这样一个循环。我们实现了这种对称分组方法,并在一组合成数据和真实图像上进行了测试。将性能与之前两种在分组成本函数中不考虑对称性的分组方法进行了比较。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验