Suppr超能文献

一种有效且准确的多视图配准误差松弛方法。

An efficient and accurate method for the relaxation of multiview registration error.

作者信息

Shih Sheng-Wen, Chuang Yao-Tung, Yu Tzu-Yi

机构信息

Department of Computer Science and Information Engineering, Nationa Chi Nan University, Puli, Nantou, Taiwan, ROC.

出版信息

IEEE Trans Image Process. 2008 Jun;17(6):968-81. doi: 10.1109/TIP.2008.921987.

Abstract

This paper presents a new method for the relaxation of multiview registration error. The multiview registration problem is represented using a graph. Each node and each edge in the graph represents a 3-D data set and a pairwise registration, respectively. Assuming that all the pairwise registration processes have converged to fine results, this paper shows that the multiview registration problem can be converted into a quadratic programming problem of Lie algebra parameters. The constraints are obtained from every cycle of the graph to eliminate the accumulation errors of global registration. A linear solution is proposed to distribute the accumulation error to proper positions in the graph, as specified by the quadratic model. Since the proposed method does not involve the original 3-D data, it has low time and space complexity. Additionally, the proposed method can be embedded into a trust-region algorithm and, thus, can correctly handle the nonlinear effects of large accumulation errors, while preserving the global convergence property to the first-order critical point. Experimental results confirm both the efficiency and the accuracy of the proposed method.

摘要

本文提出了一种用于缓解多视图配准误差的新方法。多视图配准问题用一个图来表示。图中的每个节点和每条边分别表示一个三维数据集和一次成对配准。假设所有成对配准过程都已收敛到精细结果,本文表明多视图配准问题可转化为李代数参数的二次规划问题。通过图的每个环来获取约束,以消除全局配准的累积误差。提出了一种线性解法,将累积误差按二次模型的规定分配到图中的适当位置。由于所提方法不涉及原始三维数据,其具有较低的时间和空间复杂度。此外,所提方法可嵌入到信赖域算法中,从而能正确处理大累积误差的非线性效应,同时保持到一阶临界点的全局收敛性。实验结果证实了所提方法的效率和准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验