Suppr超能文献

用于相似度估计的远程学习。

Distance learning for similarity estimation.

作者信息

Yu Jie, Amores Jaume, Sebe Nicu, Radeva Petia, Tian Qi

机构信息

Intelligent Systems Group, Kodak Research Labs, Rochester, NY 14615, USA.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2008 Mar;30(3):451-62. doi: 10.1109/TPAMI.2007.70714.

Abstract

In this paper, we present a general guideline to find a better distance measure for similarity estimation based on statistical analysis of distribution models and distance functions. A new set of distance measures are derived from the harmonic distance, the geometric distance, and their generalized variants according to the Maximum Likelihood theory. These measures can provide a more accurate feature model than the classical Euclidean and Manhattan distances. We also find that the feature elements are often from heterogeneous sources that may have different influence on similarity estimation. Therefore, the assumption of single isotropic distribution model is often inappropriate. To alleviate this problem, we use a boosted distance measure framework that finds multiple distance measures which fit the distribution of selected feature elements best for accurate similarity estimation. The new distance measures for similarity estimation are tested on two applications: stereo matching and motion tracking in video sequences. The performance of boosted distance measure is further evaluated on several benchmark data sets from the UCI repository and two image retrieval applications. In all the experiments, robust results are obtained based on the proposed methods.

摘要

在本文中,我们基于分布模型和距离函数的统计分析,提出了一种寻找更好的距离度量以进行相似度估计的通用准则。根据最大似然理论,从调和距离、几何距离及其广义变体中推导了一组新的距离度量。这些度量能提供比经典欧几里得距离和曼哈顿距离更精确的特征模型。我们还发现特征元素通常来自异质源,这可能对相似度估计有不同影响。因此,单一各向同性分布模型的假设往往不合适。为缓解此问题,我们使用一种增强距离度量框架,该框架找到多个最适合所选特征元素分布的距离度量,以进行准确的相似度估计。用于相似度估计的新距离度量在两个应用中进行了测试:视频序列中的立体匹配和运动跟踪。在来自UCI库的几个基准数据集和两个图像检索应用中进一步评估了增强距离度量的性能。在所有实验中,基于所提出的方法都获得了可靠的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验